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Abstract: This paper aims to investigate the impact of non-Gaussian measurement 

noise on state estimation (SE) results in distribution systems. To this end, the 

measurement noise is assumed to be distributed according to Gaussian or one of 

the following non-Gaussian probability distribution functions: Uniform, Laplace, 

Weibull and Gaussian mixture of two Gaussian components. The influence is 

investigated on three different state-of-the-art SE methods: weighted least squares 

(WLS) based static SE method, and two Kalman filter based forecasting-aided SE 

methods, namely extended Kalman filter (EKF) and unscented Kalman filter 

(UKF). Analyses are conducted on modified IEEE 37-bus system under different 

operating conditions, including quasi-steady state, sudden state changes and bad 

data. Performance of the methods in the presence of non-Gaussian measurement 

noise is compared against their performance when measurement noise is Gaussian 

distributed. The main conclusions were drawn, summarizing the impacts non-

Gaussian measurement noise has on SE and proposing the solutions for 

overcoming some of the negative impacts. 

Keywords: Distribution systems, Extended Kalman filter, Non-Gaussian measu-

rement noise, State estimation, Unscented Kalman filter, Weighted least square. 

1 Introduction 

The task of SE is to provide accurate estimates of bus voltage phasors under 

wide range of operating conditions, including quasi-steady state operation, 

sudden state changes and bad data. Although SE of transmission systems has 

reached a certain level of maturity, SE of distribution systems still faces many 

difficulties. It is very important to overcome these difficulties because results of 

distribution system SE are being used for network reconfiguration, voltage/var 

control, distributed generation (DG) control, demand-side integration, 

contingency analysis, capacitor switching etc.; therefore, inaccurate state 

estimates can lead to wrong control decisions. One of the difficulties that 

threatens the accuracy of distribution system SE is intensified integration of 
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intermittent DGs because it introduces more uncertainties into estimation results. 

Presence of bad data is an old ailment of distribution system SE that has persisted 

to this day since the lack of telemetry still remains at the distribution level. Lack 

of telemetry can also lead to loss of observability of the distribution system, 

making the SE feasible only in observable islands. Finally, the measurement 

noise statistics are usually not well known, so they are subject to certain 

assumptions. This paper investigates how statistics of measurement noise, 

especially if they are wrongly assumed, can affect the SE. 

The most common assumption in state estimation (SE) is that measurement 

errors are independent, identically distributed and follow Gaussian distribution 

with zero mean. In practice, telemetered measurements collected using different 

metering devices (smart meters or different types of synchronized measurement 

devices (SMDs) including phasor measurement units (PMUs), microPMU, SMD-

R etc. [1]), do not necessarily contain a noise that follows a Gaussian distribution 

[2]. This can be due to the electromagnetic interference in communication 

channels, and due to other sources of communication noise that can originate 

from natural causes (such as bad weather conditions) or artificial causes (such as 

technology based on inverters) [3, 4]. Obviously, there is a possibility of 

occurrence of non-Gaussian measurement noise in SE. If the same occurs, the 

performance of state estimators should be reconsidered. 

In distribution systems, there is a limited number of installed conventional 

metering devices. In addition, SMDs are still not widely implemented in the 

distribution systems. To improve the measurement redundancy, unavailable 

measurements are commonly replaced with pseudo and/or virtual measurements. 

Pseudo measurements represent power injections of unmonitored loads obtained 

from the normalized daily load profiles, or power injections of the DGs calculated 

from the external inputs (wind speed, solar irradiance, water inflow predictions, 

etc.). As such, pseudo measurements are less accurate than telemetered 

measurements; they can contain measurement errors up to 50% and decrease the 

accuracy of SE, especially in case of poorly monitored distribution systems  

[5  7]. The errors contained in pseudo measurements do not necessarily follow a 

Gaussian distribution either. Conversely, virtual measurements represent zero 

active and reactive power injections into the buses without connected demand or 

DGs. Since these injections are known exactly, virtual measurements are highly 

accurate. As such, virtual measurements improve the accuracy of SE. 

To handle non-Gaussian noise in pseudo measurements, Bayesian estimator 

is proposed [8]. Also, Bayesian estimator in [9] utilizes forecasted information 

and measurements on power flows, which can express non-Gaussian behavior. 

Transformed likelihood estimation method [10] and two robust state estimation 

methods founded on the conventional cubature particle filter [11] were used for 

state estimation and bad data detection in distribution networks to deal with the 
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non-Gaussian distributed measurement noise. Analysis of bad data, utilizing the 

largest normalized residual test, is used to detect, identify, and correct/eliminate 

multiple measurements with gross errors under both Gaussian and non-Gaussian 

noises [12]. In [13], authors investigated how a non-Gaussian measurement noise 

affects the distribution of the state vector of a linear Kalman filter. Cumulants 

(mean and variance) are used as a criterion to define the deviation of a non-

Gaussian distribution from the Gaussian. However, a work that thoroughly 

investigates impacts of different types of non-Gaussian measurement noise on the 

performance of most frequently used state estimators under variety of operating 

conditions, summarizes them in one place and provides general conclusions, is 

still missing. 

To address the above, in this paper, the performance of a static SE and two 

forecasting-aided SE are tested under the assumption that the telemetered and 

pseudo measurements are with non-Gaussian type of measurement noise. The 

different types of non-Gaussian probability density functions are assigned to the 

measurement noise, namely Uniform, Laplace, Weibull and Gaussian mixture. 

Then, the performance of the state estimators is compared against their 

performance in the presence of Gaussian distributed measurement noise. The 

comparison is made under different operating conditions, including quasi-steady 

state operation and sudden state changes. To make the comparison complete, 

performance is also compared from the perspective of bad data detection. 

The remaining sections of the paper are structured as follows. The Section II 

presents three different estimation algorithms: WLS based static SE method and 

two Kalman filter based forecasting-aided SE methods (EKF and UKF). In the 

Section III, different types of non-Gaussian probability density functions are 

introduced. In Section IV, simulations and comparative analysis are conducted 

on modified IEEE 37-bus system. Finally, the primary conclusions are formulated 

in Section V. 

2 State Estimation Methods 

The state transition function describes how the system's state evolves over 

the time. Mathematically, the state transition function can be expressed as [14]: 

 
         1j j j j j

  x F x g w , (1) 

where: 

[ ,θ ]T T Tx V  – n × 1 dimensional vector of the state variables, i.e., bus 

voltage magnitudes V  and phase angles θ ; 

F  – n × n dimensional state transition matrix; 

g  – n × 1 dimensional vector associated with the trend behavior of the state 

trajectory; 
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w  – n × 1 process noise vector accounting for uncertainties in the state 

transition function;  

j – time instant; and 

n – total number of state variables. 

The association between measurements and state variables is called the 

measurement function and is mathematically expressed as [15]: 
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where: 

z  – m × 1 measurement vector including telemetered, pseudo and virtual 

measurements; 

h  – m × 1 nonlinear vector-valued function; 

e  – m × 1 vector of measurement noise; and 

m – total number of measurements. 

To ensure observability of the entire system, the following condition must be 

satisfied: m n . In addition, the minimum necessary measurement redundancy 

must be achieved at all buses in the system. 

2.1 WLS objective function 

Static SE relies only on the measurements collected at the current time instant 

and, therefore, utilizes the measurement model (2) only. Static SE can be treated 

as a typical WLS problem, where the objective function is the sum of the 

weighted squares of measurement residuals [16]: 

      T 1[ ]J      x z h x R z h x ,    2 2 2

1 2, , , mdiag   R , (3) 

where R  is a diagonal covariance matrix whose diagonal elements are the 

variances of measurement noise. If measurement noise is Gaussian distributed, 

standard deviation 
i  of ith telemetered or pseudo measurement can be calculated 

from the measurement accuracy (Acc) as [17]: 

 , 1, 2,  , 
300

i
i i

Acc
Mean i m

 
   

 
. (4) 

The goal of optimization is to find state vector x that will minimize the 

objective function (3), i.e.,   min J
x

x  [15, 18  20]. To simplify the notation in 

(3), the superscript denoting the time instant has been omitted. 
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2.2 WLS SE method 

The method most frequently used to minimize the objective function is by 

applying the Newton-Raphson method [18]. Using Newton-Raphson iterative 

method, the increment of state vector is calculated in each iteration k as: 

 
         1 1 T 1( ) ( )
k k k k k    x G x H x R z , (5) 

where: 
        1( )
k k kT G x H x R H x  – Information matrix; 

  
 k 




h x
H x

x
 – Jacobian matrix. 

2.3 KF objective function 

In forecasting aided SE, state transition function (1) is utilized in addition to 

the measurement function (2). System of equations (1) and (2) can be solved in 

the Kalman filter framework. In this case, the objective function is extended by 

an additional term representing the sum of the weighted squares of differences 

between system states and their predictions [21]: 

          
TT 1 1[ ]J  

          x z h x R z h x x x P x x , (6) 

where: 

x  – n×1 dimensional vector of state predictions;  

P  – n×n dimensional state prediction error covariance matrix. 

The solution is being obtained by minimizing the objective function (6). If 

system of equations (1) and (2) is linear, the solution can be obtained by applying 

classical Kalman filter. If this is not the case, different approximations are 

available to deal with the system nonlinearities.  

2.4 EKF and UKF based SE methods 

The EKF is based on the approximation of nonlinear function by the Taylor 

polynomial. First order EKF implies calculation of the first partial derivatives of 

the nonlinear function with respect to state variables in the vicinity of the 

linearization point, aiming to obtain a Jacobian matrix. The UKF uses the 

unscented transformation instead of linearization, avoiding the calculation of 

Jacobian matrix. With this variant of Kalman filter, limitations of EKF are 

exceeded [22], especially for highly nonlinear systems. Regardless of the variant 

used, Kalman filter based SE has three fundamental steps: parameter 

identification, state prediction and state estimation. These steps are described via 

equations and summarized in Table 1 [14, 23, 24]. 

 



S. Čubonović, D. Ćetenović, A. Ranković 

118 

Table 1 

Summary of equations for Kalman filter based state estimation methods. 

EKF UKF 

Parameter identification 

,  ,  ,  , ,  Q R a b .  
UKF UKF UKF, , ,   Y  

       0 0

c c UKF  ,  ,  ,  , 
i i

m mw w w w   1, 2,  , 2 .i n   

State prediction 

Assuming that x and P  at time step j are 

known, the system state at time step  j+1 can 

be forecasted in the following way: 
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Terms used in the Table 1 have the following meaning: 

α,  β  – smoothing parameters; 

10qQ I  – process noise covariance matrix; 

q – parameter of the process noise covariance matrix;  

I  – identity matrix; 

R – measurement noise covariance matrix; 

a, b – n × 1 dimensional level vector and n × 1 dimensional slope vector, 

respectively, used for determining vector g ; 

UKF UKF UKF, ,   – parameters of unscented transformation; 

Y – 2n+1 dimensional vector of sigma points; 
       0 0

c c,  ,  , 
i i

m mw w w w  – weight factors; 

UKFλ  – scale parameter defined as:  2

UKF UKF UKFα κn n    ; 

https://en.wikipedia.org/wiki/Scale_parameter
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, x x – predicted state and estimated state vector, respectively; 

, P  P – state prediction and state estimation error covariance matrix, 

respectively; 

F  – state transition matrix; 

1  – vector of all ones; 
g  –  vector associated with the trend behavior of the state trajectory; 

X̂  – n × (2n+1) dimensional matrix made up of sigma points propagated 

through the process model; 

mw  – (2n+1) dimensional weight vector defined as: 

 
     0 1 2

 
n

m m m m
 
 

w w  w w ; 

W  – (2n+1) × (2n+1) dimensional weight matrix defined as: 

           0 1 2T T

2 1 c c c 2 1   
n

n m n mdiag w w w     W I w I w1 1 ; 

v  – innovation vector; 
S  – innovation covariance matrix; 

H  – Jacobian matrix; 

K  – Kalman gain matrix; and 

C – cross-covariance matrix of the state and measurement. 

3 Modeling of Measurement Noise 

WLS, as well as EKF and UKF, usually assume that the measurement noise 

follows Gaussian distribution. This assumption does not universally hold true in 

the practical applications. To investigate the impact of non-Gaussian 

measurement noise on the performance of three state estimators, different non-

Gaussian probability density functions have been assigned to measurement noise.  

The true measurement vector ztrue is obtained via power flow (PF) 

calculations. The observed (noisy) measurement vector z is obtained by 

superimposing the noise to the previously calculated true measurements as [26]: 

  1 ,   1,2,...,
300

true i
i i

Acc
z z RAND f i m

  
    

  
, (7) 

where RAND (f) is random sample generated from a probability density function f. 

We have assumed that measurement noise is independent, identically 

distributed and subject to one of the following probability distributions [12]: 

Gaussian and non-Gaussian (Uniform, Laplace, Weibull and Gaussian mixture of 

two Gaussian components). Considering independency in measurement noise, 

probability density functions for the analyzed distributions can be expressed via 

(8)  (12). 
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– Gaussian: 
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– Uniform: 
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– Weibull: 
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, (11) 

– Gussian mixture of two Gaussian components: 

      ; , , , , , ; , ; , ; mix i i i i i i i i i i i i i i ie w w w e w e                      

 
ie  , (12) 

where: 

ie  – noise in ith measurement; 

i  – mean value;  

i  – standard deviation; 

iu   – lower limit of the range; 

iv   – upper limit of the range;  

i  – location parameter; 

id  – scale parameter; 

ic  – shape parameter; 

,i iw w – weights of mixture components; 

,i i
   – means of mixture components; and 

,i i
   – standard deviations of mixture components. 

Random samples, RAND (f), were generated for each of the above 

distributions, where distributions are with the distribution parameters defined in 

Table 2. Distribution parameters are selected as in [12]. Histograms of generated 

data are shown in Fig. 1 for each of the considered probability distributions. 

In Fig. 1, 5000 data samples have been generated in case of each distribution 

using the program developed in MATLAB. Histograms are graphed in 

https://en.wikipedia.org/wiki/Shape_parameter
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comparison to the probability density function of standard Gaussian distribution 

( 0i  , 1i  ). In some cases, as is evident from Fig. 1, distribution of the 

generated data significantly differs from the commonly assumed Gaussian 

distribution. 

    

    

 

Fig. 1 – Histograms of generated numerical data in comparison with  

probability density function of standard Gaussian distribution (red curve). 
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Table 2 

Parameter settings for different probability distributions. 

Distribution Distribution parameters 

Gaussian 0i  , 1i   

Uniform 3iu   , 3iv   

Laplace 0i  , 1id   

Weibull 1id  , 1.5ic   

Gaussian mix 0.7iw  , 0.3iw , 0.5i
   , 2i

  , 0.7i
  , 1.3i

   

4 Simulation Results 

The influence of the non-Gaussian measurement noise on SE results was 

tested on modified IEEE 37-bus distribution system, shown in Fig. 2. Test system 

is modified by connecting photovoltaic (PV) generator of 900 kW rated power at 

bus 30. Measurement configuration of the modified test system is also depicted 

in Fig. 2. The observed (noisy) measurements were obtained according to the 

methodology presented in Section III. Accuracy of the telemetered and pseudo 

measurements is set as 3% and 50%, respectively. For virtual measurements of 

zero bus injections a standard deviation of 10-5 is adopted. 
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Fig. 2 – Network topology and measurement configuration  

of modified IEEE 37-bus test system. 
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State estimation is performed with three different SE methods: WLS, EKF 

and UKF, described in Section II. Execution step of SE is chosen to be 1 min. 

Simulations were run over a period of one day, giving 1440 sampling points in 

24 h. To evaluate and compare the estimation accuracy of SE methods, mean 

absolute error (MAE) and average mean absolute error (AMAE) calculated over 

voltage magnitudes and angles are used: 

 
     , ,

1

1 Vnj MAE j j true

V l ll
V

V V
n


   ; (13) 

 
     , ,

1

1 nj MAE j j true

l lln



 


     ; (14) 

 
 , 

1

1 N j MAEAMAE

VjN 
  V ; (15) 

 
 , 

θ 1

1 N j MAEAMAE

jN


   , (16) 

where: 

Vn  – number of elements in vector of voltage magnitudes V ;  

n  – number of elements in vector of voltage angles  .  

 j
lV   – estimated value of lth voltage magnitude at jth time sample;  

 ,j true

lV  – true value of lth voltage magnitude at jth time sample; 

 j
l  – estimated value of lth voltage angle at jth time sample;  

 ,j true

l  – true value of lth voltage angle at jth time sample; and 

N – total number of time samples over simulation period.  

The performance of SE methods has been compared under different 

operating conditions: quasi-steady sate, sudden state changes and bad data. 

4.1 Quasi-steady state operation 

To simulate slow changes in state trajectory, normalized daily 

load/generation profiles have been assigned to the corresponding buses. Slow 

changes in the demand and distributed generation, characterized by daily profiles, 

drive slow changes in the system state. AMAE on voltage magnitudes and angles 

is shown in the Table 3 under five different measurement noise distributions. 

Comparing the results of WLS, EKF and UKF method that are given in 

Table 3, one can conclude that the EKF method generally shows the best 

performance in terms of AMAEV  and θ

AMAE  for all tested distributions. The Uniform 

distribution leads to the highest AMAEV  and θ

AMAE  (up to 
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44.79 10AMAE   V
 p.u. and 4

θ 3.80 10AMAE     rad, in case of WLS) causing the 

poorest estimates among the tested distributions. In contrast to that, Laplace and 

Weibull distributions lead to lowest estimation errors ( 41.79 10AMAE   V  p.u. 

and 4

θ 1.04 10AMAE     rad, in case of EKF). The mentioned results are 

highlighted in the Table 3. 

Table 3 

Average Mean Absolute Error (AMAE) on voltage magnitudes and angles in quasi-

steady state operation under different measurement noise distributions. 

         Method 

 

Distribution 

WLS EKF UKF 

 

AMAEV  

 p.u.  

θ

AMAE  

 rad  

AMAEV  

 p.u.  

θ

AMAE  

 rad  

AMAEV  

 p.u.  

θ

AMAE  

 rad  

Gaussian  2.74×10-4 2.22×10-4 1.80×10-4 1.50×10-4 2.38×10-4 1.94×10-4 

Uniform  4.79×10-4 3.80×10-4 3.15×10-4 2.59×10-4 4.03×10-4 3.29×10-4 

Laplace  2.65×10-4 2.21×10-4 1.79×10-4 1.51×10-4 2.38×10-4 1.95×10-4 

Weibull  2.91×10-4 1.42×10-4 2.65×10-4 1.04×10-4 2.73×10-4 1.34×10-4 

Gaussian mix 4.08×10-4 3.27×10-4 2.77×10-4 2.25×10-4 3.55×10-4 2.86×10-4 

 

Based on the analysis of the results presented in Table 3, it is evident that 

the Laplacian noise impacts the accuracy of estimators similarly as Gaussian 

noise. As expected, the least resemblance to the results obtained under Gaussian 

distribution is shown in case when measurement noise follows Uniform 

distribution. Deviation from the results obtained under Gaussian distribution is 

also significant in the case of the Gaussian Mixture distribution. Hence, it can be 

concluded that, during quasi-steady state operation, the accuracy of state 

estimators is less affected if measurement noise is Laplacian distributed. On the 

other hand, state estimates will be uncertain the most if measurement noise is 

distributed according to Uniform or Gaussian Mix distribution. 

The process noise covariance matrix is one of the key parameters that 

impacts the performance of Kalman filter-based state estimators. It models the 

noise level of the state transition function. This noise level depends on 

uncertainties in demand and distributed generation, which can vary over the time. 

Therefore, assessment of the process noise covariance matrix is more difficult 

task compared to the assessment of the measurement noise covariance matrix. 

Luckily, most of the time system operates in quasi-steady state which is 

characterized by almost constant process-noise levels [27]. If matrix Q  is given 

in parametric form as 10qQ I , this practically means that its parameter q  can 

be set as time-invariant during quasi-steady state operation. Then, parameter q is 
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assessed based on offline analysis of this operation mode as a value that 

minimizes the estimation error. The parameter value chosen in this way provides 

accurate estimates during quasi-steady state operation. In [28], this procedure has 

been demonstrated considering that measurement noise follows Gaussian 

distribution. Here, we repeat the same experiment but under various non-

Gaussian distributions in order to check whether or not non-Gaussian 

measurement noise has impact on optimal choice of parameter q. If yes, matrix 

Q  should be readjusted. 

In Figs. 3 and 4, AMAEV
 and θ

AMAE  are shown against parameter q  in case of 

EKF and UKF, respectively. Each Kalman filter-based state estimator is tested 

under different measurement noise distributions. It can be seen that the estimation 

error sensitivity to changes in parameter q  is the same for Gaussian, Uniform, 

Laplace and Gaussian Mix distribution. The difference is pronounced only in case 

of Weibull distribution. This difference is noticeable for estimation errors in 

voltage magnitudes but negligible for estimation errors in voltage angles. When 

increasing the parameter q  above 6q   , a rise in estimation error (both 
AMAEV  

and θ

AMAE ) is generally observed, especially in case of UKF method. When 

decreasing its value below 6q   , there is no big influence on estimation 

accuracy, in general. It can be concluded that the choice of parameter q  will not 

depend on the type of measurement noise. Therefore, no readjustment of the 

process noise covariance matrix Q  is required in quasi-steady state operation. 

 

 
(a)                                                                     (b) 

Fig. 3 – Variation of (a) AMAE
V

 and (b) 
θ

AMAE  with  

respect to parameter q in case of EKF method. 

 

Legend for the Figs. 3 and 4: 
- Gaussian                      -   Uniform                        -   Laplace 

  -   Weibull                                 -   Gaussian mix 
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(a)                                                               (b) 

Fig. 4 – Variation of (a) AMAE
V

 and (b) 
θ

AMAE  with  

respect to parameter q in case of UKF method. 

 

4.2 Sudden state changes 

For an additional analysis of the impact of non-Gaussian measurement noise 

on the performance of the distribution system SE, an abrupt change in the system 

state, caused by sudden generation change, is considered. In this paper, sudden 

generation change is simulated twice at node 30. At j=556, PV generator is 

disconnected from the network. Just before disconnection, PV generator operated 

at its rated power. At j=646, PV generator is reconnected to the network. After 

reconnection, PV generator operated at 85% of its ra  ted power due to less solar 

irradiance. The MAE is calculated on voltage magnitudes and angles at each time 

instant j during the simulation period, in the existence of both Gaussian and non-

Gaussian measurement noise. The results are shown in Figs.5 and 6 for the time 

samples before and after the moment of the sudden generation change (denoted 

by a dashed line). 

As can be seen from Figs. 5 and 6, when abrupt change in power generation 

happens, the MAEs in voltage magnitudes and angles (
 556 , MAE
V  and 

 646 ,

θ

MAE
 ) 

obtained by Kalman filter based estimators increase sharply regardless of the type 

of measurement noise. This is because process noise covariance matrix Q  is not 

adapted to the ongoing changes in the system state but kept constant and equal to 

optimal matrix for quasi-steady state operation. Comparing the results at time 

instants j=556 and j=646, it can be seen that MAE of the Kalman filter based 

estimators is higher if change in the injected power is higher (MAE at j=556 is 

higher than MAE at j=646). However, impact on estimation accuracy is the same 

in case of Gaussian and non-Gaussian measurement noise. Therefore, the actions 

required to reduce the estimation error in case of Gaussian noise should be also 

taken if measurement noise is non-Gaussian distributed. WLS is insensitive to 
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sudden state changes since it utilizes the current snapshot of measurements only 

and, therefore, is not affected by the abrupt changes in the state trajectory. At the 

moment of sudden generation change, WLS maintains the same estimation 

accuracy as in quasi-steady state operation regardless of the type of measurement 

noise. It can be deduced that the state estimator’s performance under sudden state 

change remains unaffected by the type of the measurement noise.  

 

(a) 

 

(b) 

 

(c) 

Fig. 5 – The mean absolute error (MAE) on voltage magnitudes obtained by (a) WLS, 

(b) EKF and (c) UKF in the presence of Gaussian and non-Gaussian noise. 
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(a) 

 

(b) 

 

(c) 

Fig. 6 – The mean absolute error (MAE) on voltage angles obtained by (a) WLS, 

(b) EKF and (c) UKF in the presence of Gaussian and non-Gaussian noise. 

 

4.3 Bad data 

To analyze the impact of measurement noise on state estimators performance 

with integrated bad data detectors, the following case study has been conducted. 

WLS estimator has been extended with Largest Normalized Residual (LNR) test 

to enable bad data detection. LNR test is based on determination of the 

measurement with the largest value of normalized residual, and comparison of 
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that value with the prespecified threshold. If largest normalized residual is higher 

than prespecified threshold, measurement is suspected as bad; otherwise, there is 

no bad data in the measurement set. Note that performing the LNR test only 

makes sense if it is done on telemetered measurements. Accordingly, steps in 

LNR test are [15]: 

1. Calculate normalized measurement residuals associated with telemetered 

mesuarements:  
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where 
 

Ω
j

ii  is ith diagonal element of residual covariance matrix 

         1Ω [ ] [ ]
j j j j j T R H G H  at time j, and the count of telemetered 

measurements in the measurement set is represented by 
telm . 

2. Find the largest measurement residual: 
    ,

max
j j nor

i
i

LNR r ; 

3. Compare  j
LNR  with t , where t  is the detection threshold;  

4. If  j
LNR t , measurement is suspected as bad data; otherwise, in the jth 

snapshot, there is no suspected measurement. 

Considering statistical properties of the Gaussian noise, threshold t  in LNR 

test is usually set to 3t   [15, 29]. False positive is the case in which LNR test 

indicates bad data presence although there is no bad data in the measurement set. 

To further reduce the number of false positives in case of Gaussian measurement 

noise, this threshold can be set higher than 3t  . Conversely, the threshold 

should not be placed at an overly high value; otherwise, LNR test may fail to 

recognize bad data of small intensity. Therefore, in this paper, we set it to 

3.5t  . Using this setting, the performance of WLS estimator with integrated 

LNR test is analyzed for both Gaussian and non-Gaussian measurement noise. In 

Fig. 7, LNR obtained under Gaussian and non-Gaussian measurement noise in 

the absence of bad data is displayed for the entire simulation period.   

While LNR obtained in the presence of Gaussian measurement noise remains 

below the threshold almost all the time, in case of non-Gaussian measurement 

noise LNR very often transcends the threshold, resulting in a huge number of 

false positives. This is because non-Gaussian measurement noise can have a long 

and/or thick tails. Characteristics of these tails depend on the type and the 

distribution parameters of the specific non-Gaussian probability density function. 

Table 3 summarizes the numbers of false positives in case of different types of 

measurement noise. While the prespecified detection threshold can be considered 

as suitable for the Gaussian measurement noise, the rate of false positives is 
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unacceptably high in case of non-Gaussian measurement noise. This is especially 

true for Uniform and Gaussian Mixture distribution, where bad data is wrongly 

detected at every sixth time instant on average. 

 

Fig. 7 – LNR without the presence of bad data while taking into account  

various distributions of the measurement noise. 

 

Obviously, non-Gaussian measurement noise can affect the performance of 

the traditional bad data detector. Therefore, if measurement noise is not Gaussian 

distributed, new detection threshold adjusted to the properties of the specific non-

Gaussian probability density function has to be selected.  

Table 3 

False positives of LNR test depending on the probability  

density function of the measurement noise. 

Probability density function 

of the measurement noise 

No. of false 

positives 

False positives 

rate [%] 

Gaussian 5 0.3 

Uniform 238 16.5 

Laplace 31 2.1 

Weibull 33 2.3 

Gaussian Mixture 224 15.5 
 

5 Conclusion 

In this paper, impact of non-Gaussian measurement noise on distribution 

system state estimation is studied, where three different state-of-the-art 

estimation methods - WLS, EKF and UKF are considered. Impact has been 

analyzed in terms of estimation accuracy, optimal setting of the process noise 

covariance matrix and performance of traditional bad data detector. Investigation 
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has been done utilizing Uniform, Laplace, Weibull and Gaussian mixture as 

representatives of non-Gaussian probability distributions. As a benchmark, 

results obtained under Gaussian measurement noise are used. In quasi-steady 

state operation, non-Gaussian measurement noise can introduce more uncertainty 

into state estimates, depending on the specific type of non-Gaussian distribution. 

In case of Kalman filter-based estimation methods, non-Gaussian measurement 

noise generally does not impact the optimal choice of the process noise 

covariance matrix for quasi-steady state. Performance of all three state estimators 

in case of sudden state changes remains unaffected by non-Gaussian 

measurement noise. However, non-Gaussian noise can significantly affect the 

performance of traditional bad data detectors, such as Largest Normalized 

Residual test, requiring readjustment of the detection threshold. As one of the 

future research directions, investigation can be extended considering that non-

Gaussian noise is not independent and identically distributed. 
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