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Abstract: Since their rediscovery in the early 1990s, low-density parity-check 

(LDPC) codes have become the most popular error-correcting codes owing to their 

excellent performance. An LDPC code is a linear block code that has a sparse 

parity-check matrix. Cycles in this matrix, particularly short cycles, degrade the 

performance of such a code. Hence, several methods for counting short cycles in 

LDPC codes have been proposed, such as Fan’s method to detect 4-cycles, 6-

cycles, 8-cycles, and 10-cycles. Unfortunately, this method fails to count all 6-

cycles, i.e., ignores numerous 6-cycles, in some given parity-check matrices. In 

this paper, an improvement of this algorithm is presented that detects all 6-cycles 

in LDPC codes, as well as in general bipartite graphs. Simulations confirm that 

the improved method offers the exact number of 6-cycles, and it succeeds in 

detecting those ignored by Fan’s method. 

Keywords: Low-density parity-check (LDPC) code, 6-cycle, Parity-check matrix, 

Tanner graph. 

1 Introduction 

Low-density parity-check (LDPC) codes are a class of block codes, they 

were first proposed by Gallager [1] in the early 1960s. Unfortunately, they were 

ignored for over three decades due to their decoding complexity that exceeds the 

capacity of electronic systems at the time, before being rediscovered by MacKay 

et al. [2] in the mid-nineties. Since then, owing to their excellent performance, 

these codes have become the focus of numerous researchers. Each LDPC code is 

characterized by a sparse parity-check matrix H, i.e., a matrix whose components 

are elements of GF(2), where the number of ones is low compared to that of zeros. 

One can represent graphically this matrix by using a graph known as the Tanner 

graph [3]. This graph is a bipartite graph that consists of bit and check nodes that 

correspond to the columns and the rows of H, respectively. An edge, that connects 

a bit node to a check node, appears in a Tanner graph if and only if the value of 

the intersection of the column and the row corresponding to these nodes is equal 
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to 1. A cycle in a bipartite graph is a collection of edges which starts with a node 

and ends to the same node without going through an edge more than once. One 

can get the length of a cycle by adding up the number of edges it contains, and 

the shortest length is the girth of the code. Cycles, particularly short cycles, in the 

Tanner graph is one of the factors that affect the performance of LDPC codes [4 

 6]. Hence, the importance of finding a method to calculate the number of these 

cycles. 

In [7], J. Fan et al. have proposed a method to count 4-cycles, 6-cycles, 8-

cycles, and 10-cycles in LDPC codes. Unfortunately, this method provides 

inaccurate numbers of 6-cycles in some LDPC codes. We have noticed this 

shortcoming after calculating all 6-cycles in several matrices by analyzing the 

shapes of these cycles (Fig. 1). By comparing the results that we have obtained 

with those obtained using Fan’s method, we have found that Fan’s method 

ignores numerous 6-cycles in two cases, as discussed later in Section 3. 

In this paper, we propose an improved version of Fan’s method to handle this 

shortcoming. This improvement allows counting the exact number of 6-cycles in 

LDPC codes, as well as in general bipartite graphs. 

The rest of the paper is organized as follows. In Section 2, we describe Fan’s 

method. The improved method, which is based on Fan’s method, is detailed in 

Section 3, while Section 4 contains the results of computer simulations. Finally, 

the conclusion is provided in Section 5. 

2 Description of Fan’s Method 

In a given parity-check matrix, a 6-cycle occurs when there exist six 1s in 

three rows and three columns according to the six shapes shown in Fig. 1. 

 

Fig. 1 – Shapes of 6-cycles in a parity-check matrix [7]. 
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To calculate the number of 6-cycles in a given n×m parity-check matrix H, 

using Fan’s method, we need first to calculate the number of three-row 

combinations which is given by 

 
 

!

3 3! 3 !

m m
w

m

 
  

 
. (1) 

Second, for the i’th combination of three rows, we change the elements equal 

to 1 in the second and third row, of the matrix H, to 2 and 4 respectively, while 

those in the first row still unchanged, as shown in Fig. 2. 

 

Fig. 2 – Four kinds of columns in three rows [7]. 

 

Third, by adding up the chosen three rows, we get a sum row containing 

either the four kinds of columns shown in Fig. 2 or some of them. Let num3, num5, 

num6, and num7 denote the number of 3, 5, 6, and 7 in the sum row, respectively. 

One can calculate the number of 6-cycles in the i’th sum row as follows: 

 

1 3 5 6

3 5 7

5 6 7

( )

.

p i num num num

num num num

num num num

  

  

  

 (2) 

Finally, the total number of 6-cycles in the matrix H is given by 

 1

1

( )
w

i

p p i


 . (3) 

3 Improved Method 

In this section, we count all 6-cycles in some parity-check matrices by 

analyzing the shapes of these cycles (Fig. 1) and compare the obtained results 

with those obtained using Fan’s method. Throughout this section, we will prove 

that Fan’s method fails to detect numerous 6-cycles in two cases.  



D. Slimani, A. Kaddai 

86 

3.1 First case 

This case happens when num7, in the sum row, is equal to 2. Let 

 1 2 3

1 1 1 1 0 1 1 1 1 0 1 0

1 1 0 1 1 0 1 1 1 0 1 1
, , .

1 0 0 1 0 1 1 1 1 1 1 1

7 3 / 7 / 5 7 7 7 / 7 6

H H H

     
     
       
     
          
     

 

Using Fan’s method to calculate the number of 6-cycles in the matrices H1, 

H2, and H3, we have found that these matrices are 6-cycle free, but indeed, by 

analyzing the shapes of these cycles given in Fig. 1, each of them contains two 6-

cycles. 

The 1s that create the first 6-cycle are shown, in bold, in the matrix, H1, 

bellow: 

 1

1 1 1 1

1 1 0 1 .

1 0 0 1

H

 
 

  
 
 

 

For simplicity, we will denote throughout this paper a 6-cycle as 

 1

1 2

2 4 ,

1 4

C

 
 

  
 
 

 

where the first, second, and third row of C1 represent the indices of 1s, involved 

in the first 6-cycle, in the first, second, and third row of H1, respectively. Thus, 

the second 6-cycle is 

 2

2 4

1 2

1 4

C

 
 

  
 
 

. 

Regarding 6-cycles in the second and third matrix, they are given by 

 

2 1 2

3 1 2

2 3 2 4

: 3 4 , 3 4 ,

2 4 2 3
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In this first case, the number of 6-cycles is equal to two for each of the 

combinations (7, 7, 3), (7, 7, 5), and (7, 7, 6). Therefore, the ignored 6-cycles by 

Fan’s method, in the i’th sum row, are 

 
 

 

 
 

7
2 3 5 6

7

7
3 5 6

7

!
( ) 2
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num

num
num num num
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  
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  


 (4) 

Thus, the total number of 6-cycles in a given parity-check matrix, in this first 

case, is 

  1 2

1

( ) ( )
w

i

p p i p i


  . (5) 

 

Example 1: Let H be the parity-check matrix of an LDPC code. 
 

 

1 1 1 0 1 0 0 1 1 1 1 0

0 1 1 1 1 1 0 0 1 0 0 1
.

1 1 0 0 1 1 1 1 0 1 0 1

5 7 3 / 7 6 / 5 3 5 / 6

H

 
 
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 
  
 

 

Fan’s method: 

By using (2), we have 1(1)  44p  . Thus, the number of 6-cycles is 44 cycles. 

Improved method: 

By using (4), we have 

 
 

 2

2!
(1) 2 3 2 14

2 2 !
p    


. 

The total number of 6-cycles, using (5), is 

  
1

1 2 1 2

1

( ) ( ) (1) (1) 44 14 58
i

p p i p i p p


       . 

In this example, we notice that Fan’s method could not detect 14 6-cycles, 

i.e., could not detect p2 6-cycles. 
 

3.2 Second case 

In this case, num7 is greater than or equal to 3.  

Let 
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1 1 1 1

1 1 0 1

1 1 0 1

7 7 / 7

H
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. 

According to Fan’s method, the matrix H has no 6-cycles, whereas it contains six 

6-cycles, as shown below. 

1 2 3
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We notice that the number of 6-cycles for each combination (7, 7, 7) is equal 

to six. Thus, the total number of these cycles in the i-th sum row is 
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Furthermore, because this case includes the first case, i.e., num7 is equal to 

2, the total number of 6-cycles is 
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1

( ) ( ) ( )
w

i

p p i p i p i

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Example 2: Let H be the parity-check matrix of an LDPC code. 
 

1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0

1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1
.

1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1

7 7 3 3 / 6 / 7 3 5 / 6 5 7 7 / 7 3 6

H

 
 
 
 
  
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Fan’s method: 

The number of 6-cycles is p1 = 180 cycles. 

Improved method: 

By using both (4) and (6), we find that p2(1) = 270 and p3(1) = 120. Thus, the 

total number of 6-cycles, using (7), is 



An Improved Method for Counting 6-Cycles in Low-Density Parity-Check Codes 

89 

 
1

1 2 3 1 2 3

1

( ) ( ) ( ) (1) (1) (1) 180 270 120 570
i

p p i p i p i p p p


          . 

In this example, Fan’s method has ignored 390 6-cycles, i.e., has ignored  

(p2 + p3) 6-cycles. 

The improved algorithm is summarized as follows. 

 

Algorithm: Count the number of 6-cycles 

Input: A parity-check matrix H. 

Output: The number of 6-cycles p. 

   0.p   

    for i = 1 to w do 

          1( ).p p p i   

           if (num7 = 2) then 

               2( ).p p p i   

           else if (num7 >= 3) then 

               2 3( ) ( ).p p p i p i    

           end if 

    end for 

 

4 Simulation Results 

In this section, we compare the improved method, in terms of the number of 

6-cycles, with both Fan’s and Dehghan’s methods [8]. For this comparison, we 

use the following codes (from [9]). 

1. LDPC (TU KL) with N = 96, K = 48 and Rate = 1/2; 

2. WiMAX (802.16) with N = 1056, K = 880 and Rate = 5/6; 

3. The non-binary LDPC code which is characterized by N = 576,  

K = 480, Rate = 5/6 and GF(256); 

4. The non-binary LDPC code which is characterized by N = 2304,  

K = 1152, Rate = 1/2 and GF(64). 

We denote these four codes by Code A, Codes B, Code C and Code D, 

respectively. Note that we use the binary images for Codes C and D. 
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Table 1 

Comparing the improved method with that of  

Fan and Dehghan, in terms of the number of 6-cycles. 

Codes Methods Number of 6-cycles 

Code A 

Fan’s Method 216 

Improved Method 216 

Dehghan’s Method 216 

Code B 

Fan’s Method 16,720 

Improved Method 16,720 

Dehghan’s Method 16,720 

Code C 

Fan’s Method 8,582,887 

Improved Method 13,891,165 

Dehghan’s Method 13,891,165 

Code D 

Fan’s Method 1,042,246 

Improved Method 1,764,100 

Dehghan’s Method 1,764,100 

 

Through the results shown in Table 1, Fan’s method gives exact numbers of 

6-cycles for Codes A and B, which means that these codes do not contain the two 

cases mentioned in Section 3. Regarding Codes C and D, the results of Fan’s 

method are different from each of the other two methods. Therefore, the 

calculation of 6-cycles should include either both cases mentioned in Section 3 

or one of them. Furthermore, the number of 6-cycles ignored by Fan’s method is 

enormous that it reaches 5,308,278 cycles for Code C. 

5 Conclusion 

An improved version of Fan’s method for counting the number of 6-cycles, 

in general bipartite graphs, including those corresponding to LDPC codes, has 

been presented. Simulation results show that the improved method offers the 

same results as that of Dehghan’s method, which confirm the effectiveness of the 

solutions detailed in Section 3. Furthermore, the proposed method can be used to 

find the distribution of 6-cycles in parity-check matrices. 
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