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Abstract: The potential of Electric Vehicles (EVs) to decarbonize the transport-

ation industry has attracted a lot of attention in recent years in response to growing 

environmental concerns. Electric Vehicle Charging Stations (EVCSs) need to be 

properly located for widespread EV integration. The distribution system is facing 

additional challenges due to inclusion of EVCS. The adverse impacts of EVCS on 

the Radial Distribution Network (RDN) may be minimized using Distributed 

Generations (DGs) or Distribution Static Compensators (DSTATCOMs) or by 

reconfiguring the network. This paper uses a novel optimization technique to solve 

the problem of simultaneous optimal placement of EVCS with network 

reconfiguration and optimal planning (siting and sizing) of DGs and 

DSTATCOMs. The multiple objective functions are considered in order to 

minimize the active power losses, the voltage deviation, the investment costs for 

DGs and DSTATCOMs, and to increase the voltage stability of the system. A 

novel meta-heuristic Cheetah Optimization Algorithm (COA) is used to solve the 

optimization problem. To examine the effectiveness of the suggested strategy on 

33-bus and 136-bus networks, several scenarios of simultaneous incorporation of 

EVCS, DG, and DSTATCOM installations with network reconfiguration are taken 

into consideration. The COA results are also compared to the results of grey wolf 

optimization and genetic algorithms. 

Keywords: Network Reconfiguration, Distributed Generation, Electric Vehicle 

charging Station, Real Power Loss reduction, Distribution Static Compensator. 

  

 
1 Madan Mohan Malaviya University of Technology, Department of Electrical Engineering, Gorakhpur, UP, 

India; E-mails: arvind.pratap366@gmail.com; tiwarip6@gmail.com 
2 Sardar Vallabhbhai National Institute of Technology, Department of Electrical Engineering, Surat, India;  

E-mail: rmaurya@eed.svnit.ac.in, 
3Kamla Nehru Institute of Technology, Department of Electrical Engineering, Sultanpur, India;  

E-mail: bindeshwar.singh2025@gmail.com 



A. Pratap, P. Tiwari, R. Maurya, B. Singh 

2 

Abbreviations 

CB Capacitor Banks 

COA Cheetah Optimization Algorithm  

GOA Grasshopper Optimization Algorithm 

GWO Grey Wolf Optimizer 

ICRI Investment Cost Reduction Index 

IRPL Real Power Loss Index 

ITVD Index for Total Voltage Deviation 

MOF Multi Objective Function 

NR Network Reconfiguration 

PSO Particle Swarm Optimization 

RPL Real Power Loss 

VD Voltage Deviation 

VP Volage Profile 

VS Voltage Stability 

VSI Voltage Stability Index 

WNR With Network configuration 

WONR Without Network configuration 
 

Symbols 

  DG unit's rate of return on capital investment 

br  Total branches in network 

Cdg , Cdst  Capital cost of DG [$/kW] and DSTATCOM [$/kVAr] 

d, n Dimension of the search space and population size 

busN  Total nodes in network 

dstN , dgN  Total number of DSTATCOM and DG units 

DN , SN  DG and DSTATCOM life spans in years 

jP , kP  Effective active power load at j and k bus 

bc

lossP , 
wc

lossP  Real power losses with initial condition and different cases 

ssP  Real power supplied by feeder 

csP  Total real power demand by EVCSs 

,max

k

dgP , , min

k

dgP  Maximum and minimum real power injection limits of DG 

,Pdg i  Real power drawn from ith DG unit 

loadP  Total real power load demand of the system 

loadQ  Total reactive power load demand of the system 

jQ , kQ  Effective reactive power load at j and k bus 

lossQ  Reactive power loss 

, min

k

dstQ , ,max

k

dstQ  
Minimum and maximum reactive power injection limits of 

DSTATCOM 
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,dst iQ  Reactive power injected by ith DSTATCOM 

ssQ  Reactive power provided by feeder 

jkR , jkX  Resistance and reactance of jk-branch 

c

k

wV , 
c

k

bV  Voltage of kth bus with different cases and initial condition 

jV , kV  Voltage of jth and kth bus 

minV  Minimum bus voltage in p.u. 

  DSTATCOM's asset rate of return 

 

1 Introduction 

One of the major sources of air pollution and greenhouse gas emissions is 

the utilization of automobiles driven by internal combustion engines. In such a 

scenario, Electric Vehicles (EVs) can play an important role in the 

decarbonization of the transportation sector. However, the load demand on the 

distribution side has increased due to a new class of electric loads. Furthermore, 

it results in additional power loss and voltage fluctuations in the distribution 

network. Researchers have focused more emphasis on EVCS to accommodate the 

rising demand for EVs throughout the world. Integration of renewable 

Distributed Generation (DG) technologies into distribution networks has the 

potential to significantly improve system performance. Additionally, Distribution 

Static Compensator (DSTATCOM) is also utilized to resolve issues associated 

with power quality in distribution networks, such as excessive power loss and 

voltage instability. The negative impact of EV Charging Station (EVCS) on RDN 

can be reduced by the incorporation of the intelligent alternative scheduling 

option provided by the combination of renewable DG technology and 

DSTATCOM in the RDN. Several technical and economic advantages may be 

achieved by integrating DGs and DSTATCOM with EVCS in distribution 

systems at the same time. Furthermore, the optimal device allocation is crucial 

for maximizing technical and economic benefits. Numerous metaheuristic 

optimization strategies had been used by researchers to ascertain the optimal 

location of EVCS in coordination with optimal planning (siting and sizing) of DG 

and DSTATCOM units on the RDN. 

The authors of [1] proposed a chaotic student psychology-based optimization 

(CSPBO) method to determine the optimal site and size of DG units to mitigate 

the detrimental impact of EVCS on the RDNs. In [2], the authors employed a 

Transient Search Optimization (TSO) algorithm for optimal allocation of EVCS 

with DG on 25-bus unbalanced RDN with goals of improving the VP and 

minimizing the RPL. In [3], the authors presented a hybridized GWO and PSO 

(HGWOPSO) algorithm for optimal allocation of DG in order to mitigate the 

detrimental impact of EVCS on the RDN. In addition to this, multiple objective 
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functions are considered to minimize the RPL, VD, and VSI reduction for optimal 

allocation of DG to enhance the performance of the EVCS-loaded RDN. In [4], 

the authors proposed a methodology to determine the optimal placement and 

capacity of EVCS in an unbalanced RDN using PSO algorithm. Furthermore, the 

goal of the research is to mitigate the negative effects of EVCS by strategically 

placing extra DGs units on an unbalanced RDN. The study also examined the 

impact of EVCS deployment on the RPL and VP of the system. In [5], the authors 

employed Genetic Algorithm (GA) for simultaneous optimal planning (placing 

and sizing) of EVCSs and DGs by optimizing multiple objectives such as 

investment costs, system reliability, RPL, VP, and environmental benefits on the 

RDN. In [6], the authors employed the Arithmetic Optimization (AO) algorithm 

for the optimal allocation of DG units with EVCS to minimize RPL on the RDN. 

The authors of [7] presented a method for optimal planning of different types of 

DG units to mitigate negative impact of EVCS on the RDN. In addition to this, 

Harries Hawk Optimization (HHO) and Teaching-Learning Based Optimization 

(TLBO)algorithms were used to minimize the RPL, VD and VSI reduction for 

optimal planning of DG with EVCS on RDNs. 

The authors of [8] used the Marine Predators' Algorithm (MPA) for optimum 

allocation of DG and CB with EVs to reduce RPL and enhance the VSI of an 83-

bus Taiwan distribution system. In [9], a two-stage GOA-based fuzzy multi-

objective scheme was employed for optimal planning of DG, CB, and EVCSs on 

the RDNs. The proposed algorithm was used in the first stage to determine the 

optimal site and size of DGs and CB to improve system power factor, VP and 

minimize the RPL, while the optimal sites and sizes of EVCS on the distribution 

system connected with DGs and CB were determined in the second stage. The 

authors of [10] used the HGWOPSO algorithm for optimum allocation of EVCS 

with CB on the RDNs to lessen the negative impacts of EVCS on the RDNs with 

the aims of minimizing the RPL, maximizing the net profit, and improving the 

system's reliability. In [11], the authors employed the African Vulture 

Optimization (AVO) algorithm for simultaneous optimal placement of EVCS 

with allocation of DG and DSTATCOM units on the RDN. The primary objective 

was to minimize RPL, VD, and VSI reductions in the distribution system. 

However, the economic aspects for the installation of DG and DSTATCOM units 

and the significance of NR were not addressed in this study. The authors of [12] 

employed a Cooperative Spiral GA with Differential Evolution (CoSGADE) 

algorithm for the optimal allocation of EVCS with DG and CB units to minimize 

RPL, VD, and VSI reduction of 15, 69, and 118-bus RDNs. 

In [13], the authors proposed a hybridized AVO and Pattern Search 

(HAVOPS) algorithm for optimal planning of DG and DSTATCOM with NR to 

minimize the RPL and VD while maximizing the VSI of the EVCS loaded RDN. 

However, the simultaneous approach for optimum placement of EVCS with DG, 

DSTATCOM, and NR was not considered. The authors of [14] employed the 
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PSO algorithm for optimal planning of EVCS with DG and NR in order to 

minimize the investment and loss costs of an imbalanced RDN. The authors of 

[15] used a hybridized Bacterial Foraging Optimization and PSO (HBFOPSO) 

algorithm for optimal allocation of EVCS with photovoltaic-based DG system on 

RDN in order to minimize RPL, VD, and VSI reduction. In [16], the authors used 

the Honey Badger Algorithm (HBA) to tackle the issue of simultaneous optimum 

NR and DG allocation, with the goal of lowering RPL, boosting the system's VP, 

and minimizing greenhouse gas emissions while taking EV load penetration into 

consideration. In order to address NR issues, the authors of [17] presented a 

framework for incorporating radiality constraints into mathematical models of 

optimization problems for RDN. The authors of [18] used a Harmonic Search 

Algorithm (HSA) to solve the NR issue in the presence of DG units with the 

objective of minimizing the RPL and enhancing the VP of the RDNs at different 

load levels. The authors of [19] suggested a cooperative coevolutionary GA 

method for simultaneous fast charging station allocation and NR with the goal of 

minimizing investment and energy loss costs.  

Table 1 

Taxonomy of previous related works and the author’s contribution. 
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[1] √ × × × CSPBO √ √ √ × 
[3] √ × × × HGWOPSO × √ √ √ 
[4] √ × × × PSO × √ √ × 
[6] √ × × × AO algorithm × √ × × 
[7] √ × × × HHO and TLBO × √ √ √ 

[8] √ × × × MPA × √ × √ 

[11] √ √ × × AVO algorithm × √ √ √ 

[12] √ √ × × CoSGADE × √ √ √ 

[13] √ √ √ × HAVOPS √ √ √ √ 

[14] √ × √ × PSO √ √ × × 

[15] √ × × × HBFOPSO × √ √ √ 

[20] √ × √ × Unified PSO × √ × × 

[21] √ × × × GOA × √ × × 

[22] √ × × × 
Simulated 

annealing with PSO 
× √ √ × 

[23] √ √ √ √ Bat algorithm × √ × × 

This 

paper 
√ √ √ √ COA √ √ √ √ 
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The aforementioned literature describes a number of heuristic and meta-

heuristic approaches for optimal placement of EVCS with different compensating 

devices. In addition, a MOF considering RPL, VD, and VSI is used in most work. 

As far as the authors are aware, this is the first time that COA [24], a nature-

inspired algorithm inspired by the hunting techniques of cheetahs, has been 

applied to the problem of maximizing the technical and economic benefits by 

achieving simultaneous optimal placement of EVCS with optimal NR and 

planning (siting and size) of DG and DSTATCOM units on RDN. Furthermore, 

Table 1 shows that very few research has been conducted on the economic 

aspects and simultaneous planning of EVCS, DG, and DSTATCOM with optimal 

NR. The main contributions to this article are as follows: 

– Simultaneous optimal placement of EVCS in coordination with optimal NR 

and planning (siting and sizing) of DGs and DSTATCOMs. 

– A MOF is formulated, considering technical factors such as reducing IRPL 

and ITVD while maximizing VSI, along with economic aspects related to 

investment costs for DG and DSTATCOM. 

– The computational efficiency of the COA is examined on the 136-bus 

network [25], which is a real part of Brazil's Tres Lagoas distribution system. 

– COA’s computational efficiency is compared to GWO's [26] and GA’s [27]. 

The subsequent sections of this paper are structured as follows: The 

mathematical problem formulation is discussed in Section 2. The overview and 

implementation of the COA on the specified optimization problem are discussed 

in Section 3. The simulation findings, which include a comparison to GWO and 

GA, are reported in Section 4, while Section 5 summarizes the research results. 

2 Mathematical Problem Formulations 

The aim of this section is to develop a multi-objective optimization problem 

that includes the optimal NR and allocation of multiple EVCS, DG, and 

DSTATCOM units with the aim of minimizing several adopted objective 

functions. In this work, the EVCS is modelled as a sink that absorbs the system's 

actual power during EV battery charging [28], while the DG and DSTATCOM 

are modelled as active and reactive power sources, respectively, and operate 

under steady-state conditions. The mathematical modelling of EVCS is based on 

the work presented in [11, 13, 28], while the DG and DSTATCOM modelling is 

based on the work presented in [11, 13] and [29]. A hypothetical RDN with a 

branch jk between buses j and k is depicted in Fig. 1. The NR modelling, MOF, 

and system constraints are discussed in Subsections 2.1–2.7, subsequently. 

2.1 Network reconfiguration 

The process of reconfiguring a network involves opening the sectionalizing 

switches and closing the tie switches [18, 30]. This switching is carried out such 
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that the network's radial topology is preserved and all loads are powered on. The 

optimal reconfiguration issue involves disconnecting or rerouting feeders to 

reduce power losses. A severely loaded line may be relieved by rearranging the 

distribution system. In this work, the optimal reconfiguration of the distribution 

network is determined using COA. After identifying the fundamental loops in the 

network using graph theory, the Bus Incidence Matrix (𝐵𝐼𝑀) is computed. If the 

determinant of BIM [30] is 1 or -1, then the radial topology continues to hold; 

otherwise, the next possible solution is investigated using COA. The Total 

Fundamental Loop (TFL ) in a RDN can be determined using (1). 

 ( 1)busTFL br N= − − . (1) 

 Bus kBus j
Rjk+ j Xjk

S
u

b
st

a
ti

o
n

Pj + jQj Pk + jQk

Branch jk

 
 

Fig. 1 – Hypothetical radial distribution network. 

 

2.2 Formulation of weighting factors based multi-objective functions 

In this paper, three performance indices (IRPL, ITVD, and VSI) are taken 

into account for enhancing the technical advantages of the RDN and one 

performance index (ICRI) for reducing the investment costs associated with 

installing the DG and DSTATCOM units [31]. In addition to this, the weighting 

factors are used to formulate the multiple objective functions in a single 

mathematical equation [32], as given by (2). In this work, the decision variables 

in the optimization problem are the location of EVCS, switches to be opened for 

optimal NR, and locations of compensating devices along with their optimal 

sizes. Furthermore, the decision variables are optimized to achieve the 

minimization of multiple objective functions. 

  1 1 2 2 3 3 4 4minMOF J J J J=   +  +  +  , (2) 

where 1 2 3, ,    and 4  are the weighting factors associated with 1 2 3, ,J J J  and 

4J , respectively. The sum of all the weighting factors must be equal to one. The 

various adopted objective functions ( 1J , 2J , 3J , 4J ) are discussed in Subsections 

2.3–2.6, subsequently. 
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2.3 Minimization of IRPL (J1) 

The first objective function 1J  is utilized to minimize the RPL of the network 

by minimizing the value of IRPL while satisfying the system constraints [13]. 

Mathematically, 1J  can be defined as: 

 ( )1  J Minimize IRPL= . (3) 

The IRPL for the RDN can be formulated as the ratio of the actual power 

loss at different cases to the power loss at base case [33], and which can be 

expressed as provided by (4). The real power loss in the branch jk can be 

computed using (5): 

 
wc

loss

bc

loss

P
IRPL

P
= , (4) 

 
2 2

2

(
(

)
) jk

k k
ll

k

P jk
P Q

R
V

+
= . (5) 

The total real power loss of the network can be calculated as the sum of 

power losses in all branches using (6). 

 
1

( )
br

loss ll

jk

P P jk
=

= , (6) 

where lossP  denotes total active power loss in the RDN and llP  denotes active 

power loss in jk branch. 

2.4 Minimization of ITVD (J2) 

The second objective function 2J  is utilized to improve the VP of buses in 

the RDN by minimizing the value of the ITVD while satisfying the system 

constraints [13, 34]. Mathematically, 2J  can be defined as: 

 ( )2  J Minimize ITVD= . (7) 

The ITVD for the RDN can be expressed as provided by (8): 

 
( )

( )
1

1

1

1

bus

bus

wc

k

bc

k

k

N

N

k

V
ITVD

V

=

=

−
=

−




. (8) 

2.5 Maximization of VSI (J3) 

The third objective function 3J  is utilized to maximize the voltage stability 

index of the system [35]. Mathematically, 3J  can be defined as: 

 
-1

3  (( ( )) )J Minimize VSI k= . (9) 
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The VSI of the receiving end bus k of a branch jk can be expressed as 

provided by (10): 

  
2

2 2 2 2 2( ) 2( ) 4( ) ( )kjkj k jk k k jk jkVSI k V P R Q X P Q R X= − + − + + . (10) 

2.6 Minimization of the ICRI (J4) 

The optimal planning of DG and DSTATCOM units in the RDN might 

reduce the amount of capital expenditure needed to install such units. In addition 

to this, ICRI is employed for optimal sizing of DG and DSTATCOM units to 

achieve the most cost-effective deployment while adhering to technical 

constraints. A lower ICRI value indicates a more economical integration of DG 

and DSTATCOM into the RDN while maximizing technical advantages [5, 13, 

36]. Mathematically, 4J  can be defined as: 

 4  ( )J Minimize ICRI= . (11) 

The ICRI can be computed based on the installation costs of DG and 

DSTATCOM and their costs at the maximum penetration limit at the optimal 

nodes [31], as given by (12). In addition to this, the total cost of DG and 

DSTATCOM is converted to annual costs using the economic life of the devices 

and the interest rate [5, 13, 36]: 

 

max max

, ,

1 1

(1 /100) (1 /100)
 

(1 /100) 1 (1 /100) 1

dg dst SD

SD

N N NN

dg dg i dst dst i NN
i i

DG DST

IC IC

C P C Q

ICRI
C C

= =

    +  +  
+   

+ − +  −    
=

+

 
, (12) 

where 
max

DG

ICC  and 
max

DST

ICC  are the total installation costs of DG and DSTATCOM 

units at their maximum rating in [$], respectively. 

2.7 Constraints 

The MOF is subjected to several system constraints that need to be satisfied 

[18]. These inequality and equality constraints are discussed in this section as 

follows: 

Power balance equations: The limitations on the real and reactive power balances 

are specified by (13) and (14), respectively.  

 
,1

dgN

ss dg i load cs lossi
P P P P P

=
+ = + + , (13) 

 
,1

dstN

ss dst i load lossi
Q Q Q Q

=
+ = + . (14) 

Limits of bus voltage: The voltage at each bus should be maintained within a 

certain range to ensure that the system operates stably. The voltage constraint for 

each bus in the RDN is expressed by (15): 

 5( .0.95 ) 1.0.k puV  . (15) 
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VSI limitations: The VSI of each bus must be greater than zero to ensure the stable 

operation of the system, as specified by (16).  

 ( ) 0       2,3, , busVSI k for k N = . (16) 

DG and DSTATCOM rating limits: The capacity of individual DG and 

DSTATCOM units is limited by their maximum and minimum rating as specified 

by (17) and (18), respectively: 

 ,max,min

kk

dg dg

k

dgP P P  , (17) 

 ,min ,max

k k

ds

k

dst t dstQ Q Q  . (18) 

The constraints for the total installed capacity of DG and DSTATCOM units are 

specified by (19) and (20), respectively: 

 
,1

dg

d

N

dgi oai lP P
=

 , (19) 

 
,1

dst

load

N

dst ii
Q Q

=
 . (20) 

Radiality constraint: The constraint that ensures the existence of radial topology 

in a network is provided by (21): 

 1BIM = . (21) 

3 Proposed Methodology 

The details of the Cheetah Optimization Algorithm (COA) and its 

application are discussed in Subsections 3.1–3.2, subsequently. 

3.1 Overview of COA 

COA is a nature-inspired optimization approach proposed by [24]. COA is 

inspired by cheetah hunting techniques. Cheetahs hunt by seeking out their prey, 

waiting, and then launching an attack. The leave the prey and return home method 

is also used in the hunting process to increase population diversity, convergence 

performance, and the robustness of the suggested framework. The strategies [24] 

involved in COA are presented in Figs. 2a–2d. The flowchart of suggested 

algorithm is depicted in Fig. 3. 

A) Search strategy 

To obtain food, cheetahs have to look throughout their territories (search 

space) and in the surrounding area. The searching strategy of cheetahs may be 

mathematically modelled by using the notation , 

t

i jZ  to express the current 

location of cheetah i in arrangement j. Different types of prey are encountered by 

each individual cheetah. The different states of cheetah constitute a population, 

and each individual prey is a decision variable that corresponds to the optimal 
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option. Thereafter, the new location of cheetah i in each arrangement are updated 

based on their previous position and an arbitrary step size, as given in (22): 

 
1 1

,  ,  ,  ,      1, ,  2, ,  ,   1,  2, ,t t t

i j i j i j i jZ Z i n j d+ −= +  =  = , (22) 

 ( ) ( )( ),    0.0001( / )t

i j ht b bt T U j L j = − , (23) 

where 
1

, 

t

i jZ +
, , 

t

i jZ , 
1

, i j

−  and , 

t

i j represent the next position, the current positions, 

randomization parameter and the step length of cheetah i in arrangement j, 

respectively. bU  and bL are the upper and lower limits of search space. The 

position of the cheetah (leader) is updated in each cheetah arrangement by 

assuming the step length , 

t

i j  as provided by (23), while the locations of the 

remaining cheetahs are updated by assuming the step length , 

t

i j  as given by (24). 

Locating the neighboring member of the cheetah involves the following steps: i) 

Randomly choose a member of the cheetah population. ii) Iterate over the chosen 

members. iii) For each selected individual, check whether it is the last member of 

the population. iv) If it's the last member, choose the preceding member as the 

neighboring agent. v) Choose the next member as the neighbor agent if it's not 

the last. 

 ,  ,   0.0001( / )abs( )t t

i j ht leader i j pt T X Z A = − + , (24) 

where t is the current hunting time, and htT is the maximum length of hunting 

time. leaderX  is the leader position, and Ap is random number which is equal to 

0.001 times of the rounded value of a random number generated between 0 and 1 

(i.e., 1 if the random number > 0.9, else 0). 

B) Sit-and-wait strategy 

Cheetahs come across their prey when they are actively looking for it. Every 

action that the cheetah does in this circumstance has the potential to notify the 

target animal, causing it to break up the pursuit and run away. To avoid this 

concern, the cheetah could try to ambush its prey by hiding behind some shrubs 

or lying down on the ground. Therefore, when operating in this mode, the cheetah 

waits for its prey to get closer to it (Fig. 2b). This behavior may be modelled as 

(25): 

 
1

,  ,  t t

i j i jZ Z+ = , (25) 

where 
1

, 

t

i jZ +
 and , 

t

i jZ  are updated and current locations of cheetah i in arrangement 

j, respectively. This technique needs the COA to not alter all the cheetahs in each 

group at the same time in order to prevent premature convergence and improve 

hunting. 
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(a) 

 
(b) 

a

d

c

b

 
(c) 

 
(d) 

Fig. 2 – (a) Searching strategy; (b) Sitting-and-waiting strategy;  

(c) Searching strategy; (d) Capturing strategy of Cheetah [24]. 

 

C) Attack strategy 

Cheetahs are able to successfully hunt because of their speed and their 

suppleness. Cheetahs are known to run up to their prey before making an attack. 

After a short period of time, the prey becomes aware of the cheetah's attack and 

runs away. The cheetah moves very swiftly in pursuit of the prey along the 

direction of the interception, as can be shown in Fig. 2c. To put it another way, 

the cheetah tracks its prey and modifies its motion such that it can outmaneuvers 

the prey at some time. Because the cheetah's next location is close to the prey's 

previous position, as illustrated in Fig. 2d, the prey needs to run away and change 

its position as rapidly as possible in order to live. During a collective hunt, it is 

possible for each cheetah to modify its location in response to the prey and the 

leader. These cheetah assault tactics are mathematically stated as (26) – (28): 

 
1

,  ,  ,  ,    t t t

i j B j i j i jZ Z TF+ = +  (26) 

 , ,,   t

i

t nb

j i ji jH ZX= − , (27) 
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( 2)

,

/abs( ) sin(2 )exp rand

i j rand dTF ran=  , (28) 

where , 

t

B jZ  is the location of the prey in arrangement j; ,

nb

i jX  is the neighbor 

position; , i jTF  and , 

t

i j  are Cheetah i’s turning factor and interaction factor in 

arrangement j, respectively. Cheetahs, while in an attacking mode, utilize their 

maximal speed to swiftly narrow the distance between themselves and their prey; 

hence, , 

t

B jZ  is employed in (26). 

D) Hypotheses 

In hunting, the searching or attacking approach is employed randomly, 

although the searching method becomes more probable with time owing to 

depleting cheetah energy. In other circumstances, the search strategy comes first, 

whereas the attack method is used for high values of 𝑡 to produce better results. 

If 2 3 rand rand , the sit-and-wait approach is chosen; otherwise, one of the 

seeking or assaulting strategies is chosen based on a random value R, as given by 

(29) and (30): 

 

2 3 4

1

,  2 3 4

2 3

  &   ,

    &   ,

 

Eq. (26), if

Eq. (22), if

Eq. (25), i ,f

t

i j

rand rand R rand

Z rand rand R rand

rand rand

+






 

= 



  (29) 

 
( )2 1 /

1   e  (2 1)htt T
R rand

−
= − , (30) 

where rand1, rand2 and rand3 are random number from the range [0, 1]. rand4 is 

a random number from 0 to 3. Tuning rand3 controls the switching rate between 

sit-and-wait and two additional strategies. Higher rand4 values prioritize the 

exploitation phase, whereas lower values prioritize the exploration phase. 

3.2 Application of COA 

In this work, COA is employed to solve the problem of simultaneous optimal 

placement of EVCS with NR and planning of DG and DSTATCOM units on the 

RDN. During the optimization process, the Cheetah positions are considered as 

potential solution for the problem of optimal placement of EVCSs with NR and 

planning of DG and DSTATCOM units on the RDN. The algorithm searches for 

the optimal combination of these variables that minimizes the MOF, while 

satisfying the system constraints. The following are the suggested steps for 

solving the optimal allocation problem of EVCS with compensating devices and 

NR using COA. 

 Enter the bus data, branch data, and EVCS load data, as well as algorithm 

parameters (d, n and maximum iterations (Itmax)). 

 Generates an initial population of cheetahs randomly in the search space using 

(31), as given by (32). 
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   [ (1, ) ( )]b b bi L rand dp U LZ = +  − , (31) 

 

1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

,1 ,2 ,3 ,

, , ,

, , ,

, , ,

d

d

n n n n d

z z z z

z z z z
Zp

z z z z

 
 
 =
 
 
  

, (32) 

where iZp  represented a cheetah or a solution vector of dimensions d; Zp  

represents the initial population of cheetahs in the search space as a matrix of 

size ( )n d ; rand is a random number generator. Each column of the matrix 

Zp  represents a decision variable of the optimization problem. Furthermore, 

each row of the matrix Zp  represents a possible solution (i.e., a cheetah), as 

given in (33): 

 

1 2, 1 2 1 2

EVCS locationSwitchesstatus DG location

1 2 1 2 1 2

DSTATCOM location DSTDG size

[ , , , , , , , , , ..., ,

, , , , , , , , , , ,

dg

dg dst dst

i sw Kev N

N N N

Zp TS TS TS EV EV EV D D D

DS DS DS C C C CS CS CS

=

ATCOM size

],
 (33) 

 

where the subscript Kev and Tsw denote total number of EVCS and opened 

switches for optimal NR, respectively; 1 2( , , , )
dgND D D  are the locations of 

DG units, and the corresponding DG sizes are denoted by 

1 2( , , , )
dgNDS DS DS . The locations of DSTATCOM units are denoted by

1 2( , , , )
dstNC C C , and the corresponding DSTATCOM sizes are denoted by 

1 2( , , , )
dstNCS CS CS . The locations for multiple EVCS installation are 

denoted by 1 2( , , , )KevEV EV EV , and the open switches for optimal NR are 

denoted by 1 2( , , , )swTS TS TS . 

 For each randomly produced solution, compute the fitness value. 

 Verify the system’s constraints for each initial population solution. 

 Select the best solution from the initial population as the initial leader position. 

Also, initialize the current position of ith cheetah, neighbour position, and the 

prey position. The home position represents the best solution found so far, the 

leader position represents the best solution among the neighbouring solutions, 

and the prey position represents the global best solution.   

 Initialize the iteration, hunting time counters, and the function evaluation 

counter. 

 Start the main loop: The algorithm starts the main loop that will continue until 

the maximum iterations achieved ( max  FEC It ). 
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 Select a random set of m cheetahs from the population and algorithm iterates 

over the selected cheetahs and applies the different strategy to each one of 

them. 

 For each cheetah in the selected set, the algorithm selects a neighbour cheetah. 

 The COA utilizes three different strategies for the cheetahs to search for prey 

and improve their solutions, as given by (34): 

 

2 3 4

2 3 4

2 3

if

i

  &   ,

f    &   ,

 & f .i

Strategy rand rand R rand

Strategy Strategy

Attack

Search

Sit Wai

rand rand R rand

Strategy rand rant d

 

=  








 (34) 

Search Strategy: When cheetah does not detect any prey nearby (i.e., 

2 3 4&  rand rand R rand  ) it uses this strategy to move to a new location in 

the search space. The new position is calculated using (22) where a random 

number 
1

,  , 

t

i j i j

−   is added to the current position of ith cheetah to introduce 

some randomness into the movement as given by (35): 

 

1

, 1 1 1

1 1

1

,  , 1

[ , , , , , , , , ,

, , , , , , , , ] , 

dg

dg dst dst

t c c c c c c

i j Tsw Kev N

c c c c c c

N N

t

i j i jN

Z TS TS EV EV D D

DS DS C C CS CS

+

−

=

+ 
 (35) 

 where superscript c is used to denote the current position of 
thi cheetah. 

Attack Strategy: When a cheetah detects prey nearby (i.e., 

2 3 4&  rand rand R rand  ), it uses this strategy to move towards the prey’s 

location and attempt to catch it. The new position is calculated using (26) 

where ,  , 

t

i j i jTF   is added to the prey position to introduce some randomness 

into the attack as given by (36): 

 

1

, 1

1 ,  ,

1

 

1

1 1

[ , , , , , , , , ,

, , , , , , , , ] , 

dg

dg dst dst

t P P

K

t

P P P P

i j Tsw ev N

P P

j

P P

j

P P

N N N i i

Z TS TS EV EV D D

DS DS C C CS S TFC

+ =

+ 
 (36) 

where superscript P is used to denote the prey position in arrangement j. 

Sit-and-wait strategy: When a cheetah detects prey nearby but is not close 

enough to attack (i.e., 2 3rand rand ), it uses this strategy to stay in its current 

position and wait for the prey to come closer as given by (37). 

 

1

, 1 1 1

1 1 1

[ , , , , , , , , ,

,.. , , , , , , ],

dg

dg dst dst

t c c c c c c

i j Tsw Kev N

c c c c c c

N N N

Z TS TS EV EV D D

DS DS C C CS CS

+ =
 (37) 

 Updates the Function Evaluation Counter (FEC) and the best cheetah in the 

population. 

 Update hunting time counters ( t ). 
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 If  htt T rand  and the leader position does not change for a period of time, 

then implement the leave the prey and return home strategy and modify the 

leader position (i.e., replace the position of member i with the prey position). 

 Iterate through steps 7–13 until the maximum allowed number of iterations is 

achieved. 

 Return the best cheetah’s position (i.e., optimal solution). 

Assign the problem data, d and 
the initial population size (n)

FEC < itmax

Set i =0

Set j=0

Global best solution

Yes

Yes

No

Assign the neighbour 
agent of member i 

Find ϒ, TF,  μ , H, and R 

rand2  rand3Yes
Set rand4 (random number from 0 

to 3)

R  rand4
No

Determine member i's new 
position using equ. (22)

Yes

Using equ. (25), determine 
member i's new position

No

Update member i and leader's 
solutions

t=t+1

  t > rand * Tht

Generate the initial population of cheetahs 
Zpi  (i=1, 2, 3,...,n) and evaluate the fitness of 

each cheetah

Initialize the population s 
home, leader, and prey 

solutions

Start

Select m members of cheetahs 
randomly between 2 to n

Define t=0, iter=1, itmax, function evaluation counter (FEC) 
and Hunting time (Tht)=60*d/10

Stop

  Leave the prey and 
go back home

iter = iter+1
Yes

 Choose random numbers 
rand2 and rand3  

No

  Sit-and-wait Strategy Attack Strategy Search Strategy

Determine member i's new 
position using equ. (26)

j=j+1

No

i < m

Yes

j < d

i=i+1

No

 

Fig. 3 – COA flowchart. 
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4 Results and Discussions 

This research considers renewable energy type DG, which generates power 

at unity power factor, while DSTATCOM delivers reactive power. EVCS are 

presumed to have 25 charging outlets, and each charger’s power demand is 

40 kW. Therefore, 25 EVs can be charged at the same time via charging stations. 

The maximum power consumption of an EVCS is 1 MW when all of its charging 

points are utilized for charging EVs at the same time. The best location in the 

distribution network must be chosen for the placement of charging stations. Due 

to the placement of EVCS, the network's real power loss rises, and the voltage 

profile of the buses is disrupted. As a result, DGs or DSTATCOMs must be well-

positioned to mitigate the impacts of EVCS on the RDN. 

In this study, the power flow analysis on the RDN is done using the 

forward/backward sweep approach in this work [37]. Simulations are run on an 

Intel i7 computer with 3.0GHz and 8GB of RAM using MATLAB. The suggested 

COA is applied to two distribution systems. These systems are the 33-bus [38] 

and the 136-bus RDN [25]. The parameters for ICRI calculation are taken from 

[4, 5, 39], as shown in Table 2. To achieve a balance between technical and 

economic advantages, proper consideration of weighting factors is essential. In 

this study, an analytical test on a 136-bus RDN with EVCS and DG units is 

conducted to determine the most effective values of weighting factors, enabling 

the assessment of the optimal value of MOF with a balanced technical and 

economic advantage. The impact of different combinations of weighting factor 

values on MOF components are shown in Table 3.  

Table 2 

Economic data for DG and DSTATCOM allocation. 

Parameters Cdg Cdst α ν ND NS 

Values 500 $/kW 50$/KVAr 10 10 20 30 

 

4.1 Different case studies 

Four operational cases are presented to evaluate the effectiveness of the COA 

and study the impact of EVCSs in combination with DGs, DSTATCOMs, and 

optimal NR on the system performance. 

Base case: RDN without EVCS, DG, and DSTATCOM. 

Case 1: Integration of EVCSs into RDN (with and without NR). 

Case 2: Simultaneous integration of EVCSs and DSTATCOMs into 

RDN (with and without NR).  

Case 3: Simultaneous integration of EVCSs and DGs into RDN (with and 

without NR). 

Case 4: Simultaneous integration of EVCSs, DGs, and DSTATCOMs 

into RDN (with and without NR). 
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Table 3 
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According to Table 3, the DG penetration decreases as the 4 value 

increases. Consequently, the technical advantage diminishes. Also, there is close 

competition between the first six combinations of the weighting factors. 

Furthermore, the values of 1, 2, 3 and 4 at 0.7, 0.1, 0.1, and 0.1 have the lowest 

MOF but have a lesser impact on ITVD and VSI. The values of 1, 2, 3 and 4 

at 0.5, 0.2, 0.2, and 0.1 have a stronger impact on ITVD, IRPL, VSI, and the DG 

investment cost. As a result, the values of 1, 2, 3 and 4 considered are 0.5, 

0.2, 0.2, and 0.1, respectively. 

The case studies for 33 and 136 bus networks are discussed in Subsection 

5.2-5.3, subsequently. 

4.2 For 33-bus RDN 

The one-line diagram of the 33-bus RDN is depicted in Fig. 4 [30, 38]. The 

system has a total real power load requirement of 3.715 MW and a reactive power 

load requirement of 2.3 MVAr. The network consists of 33 buses, 37 branches, 

32 selection switches, 5 tie switches, and 5 fundamental loops. The system 

operates at a rated line voltage of 12.66 kV with a base MVA rating of 10. 

Furthermore, three EVCS are considered for integration into the 33-bus RDN to 

meet customer demand and ensure EVCS availability for a significant number of 

EV customers. The different operational cases of the 33-bus RDN are as follows: 
 

 

Fig. 4 – Standard 33-bus RDN. 

4.2.1 Case 1 

In this case, EVCSs are integrated into the system without considering DGs 

and DSTATCOMs to evaluate the impact of charging station load on the RDN. 

Furthermore, technical aspects such as IRPL, ITVD, and Minimum VSI (MVSI) 

are taken into consideration for MOF. Additionally, the impacts of EVCS 

installation on RDN are analyzed using two scenarios, WONR and WNR. 

A) Scenario 1 (WONR) 

In this scenario, the MOF is optimized by determining the optimal bus 

positions for EVCS installations using the COA. Table 4 presents the simulation 

results for this scenario. The potential bus locations considered for EVCS 
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installations are 2, 19, and 20, as provided in Table 5. The resulting IRPL, ITVD 

and MVSI values are 1.1933, 1.05387 and 0.6614, respectively. Furthermore, the 

value of RPL and minimum bus voltage are 251.78 kW and 0.9018 p.u., 

respectively. In addition to this, the VS tolerance limit for each bus voltage is not 

kept within the permissible range of ±5%. 

Table 4 

Performance analysis of the 33-bus RDN with four cases. 

Cases Scenario IRPL MVSI ITVD 

Vmin (p. u.) 

& bus 

number 

Total size of 

DG [MW]/ 

DSTATCOM 

[MVAr] 

RPL 

[kW] 

Base 

case 
--- --- --- --- 0.9037 & 18 --- 211 

Case 

1 

WONR 1.1933 0.6614 1.05387 0.9018 & 18 --- 251.78 

WNR 0.8638 0.7679 0.66483 0.9361 & 32 --- 182.27 

Case 

2 

WONR 0.8799 0.7388 0.80340 0.9271 & 18 ---/1.12 185.66 

WNR 0.6582 0.8377 0.55472 0.9567 &32 ---/1.15 138.87 

Case 

3 

WONR 0.4696 0.9087 0.25053 0.9764 &33 3.180/--- 99.07 

WNR 0.3496 0.9145 0.24959 0.9779 & 33 3.357/--- 73.77 

Case 

4 

WONR 0.2370 0.9065 0.22467 0.9757 &18 3.034/1.079 50.01 

WNR 0.1754 0.9446 0.14244 0.9859 & 24 3.160/1.065 37.00 

B) Scenario 2 (WNR) 

In this scenario, the potential bus locations for the EVCS installation are 

determined in coordination with the optimal network reconfiguration by 

optimizing the MOF via the COA. In comparison to the WONR scenario, when 

the RDN is reconfigured with three EVCSs, RPL decreases to 182.27 kW from 

251.78 kW, VSI increases to 0.7679 from 0.6614, and the minimum bus voltage 

increases to 0.9361 from 0.9018 p. u., as shown in Table 4. Moreover, scenario 

2 further lowers the IRPL value by 27.61 percent in comparison to WONR 

scenario. From Fig. 5, it is seen that the VPs of each node do not follow the VS 

limit of ± 5%. 

4.2.2 Case 2 

The integration of EVCSs has an additive influence on RPL and a negative 

impact on the VP and VSI, as shown in case 1. The inclusion of DSTATCOM 

units at the optimal nodes can compensate for these disruptions. In this case, the 

MOF considers both technical factors (IRPL, ITVD, and VSI) and economic 

factors (the cost of investing in DSTATCOM installation). Furthermore, the 

EVCS are optimally allocated in coordination with DSTATCOM by optimizing 

the MOF using COA under two distinct scenarios. 



Cheetah Optimization Algorithm for Simultaneous Optimal Network Reconfiguration… 

21 

A) Scenario 1 (WONR) 

In this scenario, the impact of EVCS' integration in coordination with 

DSTATCOM units on IRPL, ITVD, VSI and ICRI is studied for the 33-bus RDN, 

and results are provided in Table 4. Three DSTATCOMs are installed at buses 

31, 30, and 14, with penetrations of 0.3127, 0.4732, and 0.3641 MVAr, 

respectively. The potential bus locations for EVCS installation are 2, 20, and 19. 

Due to reactive power compensation by DSTATCOM, it can be noticed that RPL 

and ITVD are significantly decreased as compared to case 1, whereas VSI is 

significantly improved. In addition to this, the resultant values of IRPL, ITVD, 

and MVSI are 0.8799, 0.8034, and 0.7388, respectively. The value of RPL and 

minimum bus voltage are 185.66 kW and 0.9271 p. u., respectively. As shown in 

Fig. 5, the system's voltage profile improves when EVCS and DSTATCOM are 

simultaneously placed on RDN. From Table 4, it is seen that installing EVCS, 

with or without NR, does not achieve the desired results of minimizing IRPL, 

ITVD, and VSI reduction. 

B) Scenario 2 (WNR) 

In this scenario, the impact of EVCS' integration in coordination with 

DSTATCOM units and NR on various performance indices is studied for the 33-

bus RDN, and results are provided in Table 4. The switches S7, S9, S14, S37, 

and S32 are opened during NR. The candidate bus locations for EVCS are 2, 3, 

and 19. The potential bus locations for DSTATCOM installation are 30, 32, and 

17, with penetrations of 0.6431, 0.2591, and 0.2478 MVAr, respectively. 

Compared to scenario 1 of case 2, the suggested COA technique reduces RPL to 

138.87 kW from 185.66 kW, a reduction of 25.2%. In addition to this, the MVSI 

value is improved from 0.7388 to 0.8377, and the minimum bus voltage is 

increased from 0.9271 to 0.9567 p. u. From Table 4, it is seen that improvements 

in IRPL reduction, ITVD reduction, and MVSI maximization are higher when 

compared to scenario 1 of case 2. 

4.2.3 Case 3 

As observed in case 2, the inclusion of EVCS in coordination with 

DSTATCOM units at the optimal nodes does not yield the desired results of 

maximizing IRPL reduction, ITVD reduction, VSI improvement and ICRI 

reduction. As a result, the EVCS are optimally allocated in coordination with DG 

units by optimizing the MOF via COA under two distinct scenarios, WONR and 

WNR. In this case, the MOF considers both technical factors (IRPL, ITVD, and 

VSI) and economic factors (cost of investing in DG). 
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A) Scenario 1 (WONR) 

In this scenario, the impact of EVCS' integration in coordination with DG 

units on IRPL, ITVD, VSI and ICRI is studied for the 33-bus RDN, and results 

are provided in Table 4. Three DG units are installed at optimal buses 25, 30, and 

13, with penetrations of 0.66, 1.35, and 1.17 MW, respectively. The potential bus 

locations for EVCS installation are 2, 3, and 19. As a result of active power 

compensation by DGs units, it is seen that IRPL, ITVD, and VSI reduction have 

all minimized significantly compared to cases 1 and 2 of the 33-bus RDN. The 

values of RPL and minimum bus voltage are 99.07 kW and 0.9764 p. u., 

respectively. In comparison to cases 1 and 2, integrating EVCS with DGs units 

significantly improved the VP of the 33-bus network, as shown in Fig. 5. 

Furthermore, the power loss in each branch is also reduced by integrating EVCS 

with DGs. 

Table 5 

Optimal site and size of compensating devices for allocation on 33-bus RDN. 

Cases Scenario 
EVCSs 

locations 

DG sizes 

[MW] and 

sites 

DSTATCOM 

sizes [MVAr] 

and sites 

Switches opened 

Case 1 
WONR 2, 19, 20 --- --- S33-S37 

WNR 2, 3, 19 --- --- S9, S7, S14, S32, S28 

Case 2 

WONR 2, 20, 19 --- 

0.3127 (31), 

0.4732 (30), 

0.3641(14) 

S33-S37 

WNR 2, 3, 19 --- 

0.6431 (30), 

0.2591 (32), 

0.2478 (17) 

S7, S9, S14, S37, S32 

Case 3 

WONR 3, 2, 19 

0.66 (25), 

1.35 (30), 

1.17 (13) 

--- S33-S37 

WNR 3, 19, 2 

0.72 (14), 

0.75 (8), 

1.887 (29) 

--- S11, S6, S34, S32, S28 

Case 4 

WONR 19, 2, 32 

0.777 (9), 

0.580 (10), 

1.677 (31) 

0.2531 (30), 

0.6984 (31), 

0.1275 (8) 

S33-S37 

WNR 3, 19, 2 

1.03 (21), 

0.72 (18), 

1.41 (29) 

0.290 (25), 

0.265 (18), 

0.510 (30) 

S11, S7, S34, S31, S24 

 
 

B) Scenario 2 (WNR) 

In this scenario, three EVCS are optimally located with the simultaneous 

incorporation of NR and three DG units. Table 4 demonstrates the simulation 

result for this scenario. Fig. 6 represents a reconfigured 33-bus RDN with 

optimally positioned EVCS and DG units. The candidate bus locations for EVCS 

installation are 2, 3, and 19, as provided in Table 5. Three DG units are located 
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at buses 14, 8, and 29, with penetrations of 0.72, 0.75, and 1.887 MW, 

respectively. The switches S11, S6, S34, S32, and S28 are opened during NR. 

Compared to scenario 1 of case 3, the suggested COA technique reduces RPL to 

73.77 kW from 99.07 kW, a reduction of 25.53%. In addition to this, the MVSI 

value is improved to 0.9145 from 0.9087 and the minimum bus voltage is 

increased from 0.9764 to 0.9779 p. u. In comparison to scenario 1 of case 3, 

scenario 2 significantly improved the VP of the 33-bus RDN. From Figs. 7−10, 

it is seen that improvements in IRPL reduction, ITVD reduction, and MVSI 

maximization are higher compared to cases 1 and 2 due to active power 

compensation by three DGs and optimal NR. According to Fig. 11, scenario 2 

also minimizes power loss at each of the branches of the 33-bus RDN. 
 

 

Fig. 5 – VP for 33-bus RDN. 

 

Fig. 6 – Reconfigured 33-bus RDN with multiple EVCSs and DGs units. 
 

4.2.4 Case 4 

To assess the impact of EVCSs installation with simultaneous integration of 

DG and DSTATCOM units on RDN, the MOF is optimized using COA under 

multiple scenarios. The following are the two possible scenarios: 
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A) Scenario 1 (WONR) 

In this scenario, the potential bus locations for the EVCS installation are 

determined in coordination with the optimal site and size of the DGs and 

DSTATCOMs units by optimizing the MOF using COA. The results of the 33-

bus RDN for this scenario are shown in Table 4. In this scenario, the actual and 

reactive power compensation by DGs and DSTATCOMs units considerably 

increases the IRPL reduction, ITVD reduction, and VSI maximization when 

compared to cases 1, 2, and 3. The resultant values of IRPL, ITVD, and MVSI 

are 0.2370, 0.22467, and 0.9065, respectively. Also, the minimum bus voltage is 

0.9757 p.u., which is found on bus 18. The improved VPs of each bus for this 

scenario is shown in Fig. 5. In addition, simultaneous integration of EVCS, DGs, 

and DSTATCOMs lowers power loss in each branch of the network, as shown in 

Fig. 11. 

B) Scenario 2 (WNR) 

In this scenario, the potential bus locations for the EVCS installation are 

determined in coordination with the optimal NR as well as the optimal location 

and size of the DGs and DSTATCOMs units by optimizing the MOF via COA. 

Table 4 shows the results of the 33-bus network based on scenario 2 of case 4. 

During NR, the switches S11, S7, S34, S31, and S24 are opened. Also, Table 4 

shows that case 4’s scenario 2 is much superior to case 4’s scenario 1 for the  

33-bus network in terms of minimizing the IRPL, ITVD, and VSI reduction. 

Compared to scenario 1 of case 4, scenario 2 has a further 26.01 % drop in IRPL. 

Meanwhile, the minimum bus voltage rises from 0.9757 p.u. to 0.9859 p. u. and 

the VSI increases from 0.9065 to 0.9446. The improvement in IRPL reduction, 

ITVD reduction, and MVSI is highest for scenario 2 of case 4 compared to other 

cases of the 33-bus RDN, as shown in Figs. 7 – 9. Also, the power loss in each 

branch is significantly reduced, as shown in Fig. 11. 

 

 

Fig. 7 – IRPL for 33-bus RDN. 

 

Fig. 8 – MVSI for 33-bus RDN. 
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Fig. 9 – ITVD for 33-bus RDN. 

 

Fig. 10 – RPL for 33-bus RDN. 
 

 

Fig. 11 – Branch losses of 33-bus RDN (Case 1-4). 

 

4.3 For 136-bus network 

The one-line diagram of 136-bus RDN is shown in Fig. 12 [30, 25]. In 

addition, the system’s total real and reactive power load requirements are 18.31 

MW and 7.93 MVAr, respectively. The network consists of 136 buses, 156 

branches, 135 selection switches, 21 tie switches and 21 fundamental loops. The 

rated line voltage of the system is 13.88 kV, and its base MVA rating is 10. To 

fulfil customer demand and assure EVCS availability for a significant number of 

EV customers, six EVCS have been considered for installation on the 136-bus 

RDN. The different operational cases are as follows: 

4.3.1 Case 1 

In this case, EVCSs are integrated into the system without considering DGs 

and DSTATCOMs to evaluate the impact of charging station load on RDN. 

Furthermore, technical aspects such as IRPL, ITVD, and VSI are taken into 

consideration for MOF. Additionally, the impacts of EVCS installation on RDN 

are analyzed using two scenarios, WONR and WNR. 
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A) Scenario 1 (WONR) 

In the same manner as the 33-bus RDN, the impact of EVCS' integration on 

IRPL, ITVD, and VSI is studied for the 136-bus RDN, and results are presented 

in Table 6. The candidate bus locations for EVCS installations in the 136-bus 

RDN are 76, 64, 2, 100, 67, and 40. Also, Table 6 shows that the resultant IRPL, 

ITVD, and MVSI values are 1.1342, 1.0388, and 0.7499, respectively. The value 

of RPL and minimum bus voltage are 363.35 kW and 0.9306 p. u. Fig. 13 shows 

the voltage profiles of each node do not follow the VS tolerance limit of ± 5%. 

 

Fig. 12– Standard 136-bus RDN. 
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B) Scenario 2 (WNR) 

In this scenario, the impacts of EVCS installation with optimal NR on IRPL, 

ITVD, and VSI are studied for the 136-bus RDN, and the results are presented in 

Table 6. The resulting IRPL, ITVD, and MVSI values are 0.9287, 0.9240, and 

0.8672, respectively. The percentage reductions in IRPL and ITVD relative to the 

WONR scenario are 18.12 percent and 11.04 percent, respectively. The minimum 

voltage of 0.9650 p.u. is achieved at bus 61. From Fig. 13, it is seen that the VPs 

of each node follow the permissible range of VS limits of ± 5%. 

Table 6 

Performances analysis of the 136-bus RDN with cases 1 and 2. 
 

 Case 1 Case 2 

Scenario WONR WNR WONR WNR 

Vmin (p. u.)/bus 0.9306/117 0.9650/61 0.9566/117 0.9655/106 

IRPL 1.1342 0.9287 1.0168 0.9538 

MVSI 0.7499 0.8672 0.8375 0.8689 

ITVD 1.0388 0.924 0.7109 0.7017 

Total size [MVAr] 

of DSTATCOM 
--- --- ---/3.918 ---/3.913 

RPL [kW] 363.35 297.51 325.74 305.58 

EVs locations 
76, 64, 2, 

100, 67, 40 

86, 64, 100, 122, 

76, 40 

40, 86, 100, 

64, 122, 4 

43, 3, 18, 65, 64, 

122 

DSTATCOM sizes 

[MVAr]/ sites 
--- --- 

1.3403 (49), 

0.4732 (28), 

0.7556 (113), 

0.5006 (52), 

0.1724 (108), 

0.6760 (94) 

1.0216 (109), 

0.7153 (34), 

0.5279 (82), 

1.0124 (9), 

0.100 (78), 

0.5355 (134), 

Switches opened S136-S156 

S136, S137, 

S138, S38, S51, 

S141, S54, S143-

S152, S106, 

S126, S155, S156 

S136-S156 

S136, S9, S138, 

S38, S140, S141, 

S54, S143, S144-

S152, S106, S126, 

S128, S156 
 

4.3.2 Case 2 

Similar to case 2 of the 33-bus network, the EVCS are optimally allocated in 

coordination with DSTATCOM by optimizing the MOF using COA under two 

distinct scenarios. 

A) Scenario 1 (WONR) 

The impacts of EVCS' integration in coordination with DSTATCOM units 

on various performance indices are studied for the 136-bus RDN. Six 

DSTATCOMs are installed at buses 49, 28, 113, 52, 108, and 94, with 

penetrations of 1.3403, 0.4732, 0.7556, 0.5006, 0.1724, and 0.6760 MVAr, 

respectively, as presented in Table 6. The candidate bus locations for EVCS 
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installation are 40, 86, 100, 64, 122, and 4. From Table 6, it is observed that the 

simultaneous integration of EVCS and DSTATCOM has an incremental impact 

on VSI while having a decremental impact on the IRPL and ITVD of the 136-bus 

RDN. The resultant IRPL, ITVD, and MVSI values are 1.0168, 0.7109, and 

0.8375, respectively. The minimum bus voltage of 0.9566 p. u. is obtained at bus 

117. Also, Table 6 shows that improvements in RPL reduction, ITVD reduction, 

and MVSI are higher when compared to case 1 of the 136-bus network. Figs. 13 

and 14 show that the VPs of each bus is improved and the power loss in each 

branch is reduced in scenario 1 of case 2. 

B) Scenario 2 (WNR) 

The integration of EVCSs with DSTATCOMs and optimal NR resulted in a 

reduction in ITVD and IRPL while increasing VSI of the 136-bus system, as 

shown in Table 6. Compared to scenario 1 of case 2, the suggested COA 

technique reduces the value of RPL from 325.74 kW to 305.58 kW, a reduction 

of 6.18%. In addition to this, the MVSI value is improved from 0.8375 to 0.8689, 

and the minimum bus voltage is increased from 0.9566 to 0.9655 p. u. According 

to Fig. 13, adding EVCS with DSTATCOM units has improved the VPs of the 

136-bus RDN in comparison to case 1. Furthermore, the power loss in each 

branch is also reduced, as illustrated in Fig. 14. 

4.3.3 Case 3 

Similar to case 3 of the 33-bus RDN, the EVCS are optimally allocated in 

coordination with DG units by optimizing the MOF via COA under two distinct 

scenarios, WONR and WNR. In this case, the MOF considers both technical 

factors and economic factors. 

A) Scenario 1 (WONR) 

In this scenario, the impacts of EVCS' integration in coordination with DG 

units on various performance indices are studied for the 136-bus RDN. The 

potential bus locations for EVCSs are 90, 9, 82, 106, 131, and 49 on 136 bus 

RDN. The optimal size and site of DG units are presented in Table 7. The 

resulting values of IRPL, ITVD and MVSI are 0.3658, 0.6178 and 0.8714, 

respectively. The value of RPL and minimum bus voltage are 117.2 kW and 

0.9662 p. u., respectively. In comparison to cases 1 and 2, integrating EVCS with 

DGs units significantly improved the voltage profile of the 136-bus network, as 

shown in Fig. 13. Furthermore, the power loss in each branch is reduced by 

integrating EVCS with DGs, as illustrated in Fig. 14. From the Table 7, it is noted 

that this scenario shows significantly higher improvements in terms of RPL 

reduction, voltage deviation reduction, and VSI maximization when compared to 

cases 1 and 2 of the 136-bus RDN. 
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B) Scenario 2 (WNR) 

Similar to the 33-bus network, the integration of EVCSs with DGs and 

optimal NR resulted in a reduction in ITVD and IRPL while increasing VSI in 

the 136-bus network, as shown in Table 7. The potential bus locations for EVCS 

installation on the 136-bus RDN are 86, 92, 76, 18, 122, and 100. The opened 

switches for optimal NR and the location of DG units with their optimal sizes are 

also provided in Table 7. Compared to scenario 1 of case 2, the suggested COA 

technique reduces the value of RPL from 117.2 kW to 98.3 kW, a reduction of 

16.12 %. In addition to this, the MVSI value is improved from 0.8714 to 0.9099, 

and the minimum bus voltage is increased from 0.9662 to 0.9766 p. u. The 

improved VP of each bus of the 136-bus network is shown in Fig. 13. Also, 

scenario 2 minimizes power loss at each of the branches of the 136-bus RDN, as 

illustrated in Fig. 14.  

Table 7 

Performances analysis of the 136-bus RDN with cases 3 and 4. 

 Case 3 Case 4 

Scenario WONR WNR WONR WNR 

Vmin (p. u.)/bus 0.9662/117 0.9766/117 0.9734/135 0.9797/97 

IRPL 0.3658 0.3068 0.2638 0.2294 

MVSI 0.8714 0.9099 0.8967 0.9202 

ITVD 0.6178 0.5848 0.322 0.309 

Total size of 

DG/DSTATCOM 

in [MW/MVAr] 

11.641/--- 12.151/--- 
11.5814/ 

3.7947 

11.720/ 

3.884 

RPL [kW] 117.2 98.3 84.5 73.5 

EVs locations 
90, 9, 82, 

106, 131, 49 

86, 92, 76, 

18, 122, 100 

19, 2, 64, 

100, 40, 76 

54, 86, 100, 

64, 65, 76 

DG sizes [MW]/ 

sites 

2.7982(107), 

1.3774 (91), 

1.764 (53), 

1.4625 (84), 

2.0623 (32), 

2.1762 (9) 

2.310 (92), 

1.450 (82), 

2.359 (52), 

2.185 (14), 

2.176 (106), 

1.671 (32) 

2.015(14), 

2.284(106), 

1.13(93), 

2.463(49), 

1.294(84), 

2.396(29) 

1.148 (108), 

2.9 (53), 

1.285 (89), 

1.337(106), 

2.228 (74), 

2.821 (39) 

DSTATCOM 

sizes [MVAr]/ 

sites 

--- --- 

0.735(32), 

0.73(54), 

0.437(95), 

0.667(107), 

0.515(16), 

0.71(106) 

0.6434 (14), 

0.5279 (32), 

1.0459 (26), 

1.048 (136), 

0.4983 (74), 

0.120 (50) 

Switches opened S136-S156 

S73, S137-S140-

S142, S62, S144, 

S145, S134, S147-

S152, S107, S126, 

S128, S156 

S136-S156 

S68, S9, S138, 

S27, S25, S141-

S145, S83, S147-

S152, S106, S126, 

S155, S156 
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4.3.4 Case 4 

Similar to case 4 of the 33-bus RDN, the impacts of EVCS' integration in 

coordination with DG and DSTATCOM units on various performance indices are 

studied for the 136-bus RDN. The following are the two possible scenarios of this 

case: 

A) Scenario 1 (WONR) 

The potential bus locations for EVCS installation on the 136-bus RDN are 

19, 30, 64, 100, 56, and 76. The optimal location of DG and DSTATCOM units, 

along with the optimal size are provided in Table 7. The resulting values of IRPL, 

ITVD, and MVSI are 0.2638, 0.3220, and 0.8967, respectively. Furthermore, the 

improved voltage profiles for each bus in this scenario are shown in Fig. 13, 

where bus 135 has a minimum voltage of 0.9734 p. u. Also, the active power loss 

in each branch is reduced due to the simultaneous integration of EVCS with DGs 

and DSTATCOMs units, as illustrated in Fig. 14. 

 

Fig. 13 – Voltage profile of 136-bus RDN (Cases 1-4). 

 

Fig. 14 – Branch losses of 136-bus RDN (Cases 1-4), 
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Fig. 15 – IRPL for 136-bus RDN. 

  
Fig. 16 – VSI for 136-bus RDN. 

B) Scenario 2 (WNR) 

The simultaneous optimal integration of EVCS, DG, and DSTATCOM units 

with NR has a higher impact on achieving the desired results of minimizing IRPL, 

ITVD, and VSI reduction on the 136-bus network, as shown in Table 6. 

Moreover, scenario 2 further lowers the IRPL value by 13.01 percent in 

comparison to WONR scenario. The minimum voltage is 0.9797 p. u. at bus 97, 

while the MVSI value is 0.9202. Also, the simultaneous integration of EVCS with 

DGs, DSTATCOMs and optimal NR significantly decreases power loss in each 

branch, as shown in Fig. 14. According to Table 6, the improvement in IRPL 

reduction, ITVD reduction, and VSI maximization is highest for scenario 2 of 

case 4 compared to other cases of the 136-bus network, as shown in Figs. 15 – 18. 

Furthermore, the scenario 2 of case 4 achieves a better VP when compared to 

other scenarios of the 136-bus RDN. 

 

Fig. 17 – ITVD for 136-bus RDN. 

 

 

Fig. 18 – RPL for 136-bus RDN. 

 

4.4 Comparisons of COA results from GWO and GA results 

In this section, the results of COA are compared with the results of GWO 

[26] and the GA [27]. As the problem's complexity grows, it becomes more likely 
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scenario 2 of case 4 is considered to assess the robustness of the COA for both 

the 33-bus and 136-bus RDNs. The dimension of the problem in scenario 2 of 

case 4 is 17 for 33-bus RDN (i.e., 5 for NR, 6 for DSTATCOM sites and sizes, 6 

for DG sites and sizes, and 3 for EVCS placement) and 51 for 136-bus RDN (i.e., 

21 for NR, 12 for DSTATCOM sites and sizes, 12 for DG sites and sizes, and 6 

for EVCS placement). Each algorithm is run 25 times to assess the COA's 

effectiveness in solving optimization problems. To assess the robustness of COA, 

their performance characteristics are evaluated in terms of the best, mean, and 

worst values of objective functions, as illustrated in Fig. 19. The optimal solutions 

achieved by each technique for 33 bus and 136 bus networks are shown in Table 

8. From Fig. 19 and Table 8 it is observed that COA is a more reliable and 

effective approach than GWO and GA algorithms for solving complex 

optimization problems. Fig. 20 depicts the convergence curves of the best 

solution produced by adopted algorithms for scenario 2 of case 4 of the 136-bus 

RDN.  In addition to this, it is seen that the COA exhibits a better convergence 

rate compared to GWO and GA. 
 

 

       (a)                                                              (b) 

Fig. 19 – Comparisons of COA from GWO and GA results. 

 

 

Fig. 20 – Comparisons of convergence curve of COA from GWO and GA. 
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Table 8 

Comparison of COA performance for 33 and 136-bus RDNs (Scenario 2 of case 4). 
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5 Conclusions 

Cleaner transportation may be possible with the advent of EVs. EVCSs are 

developed to promote the development of EVs. However, widespread EV 

adoption necessitates a robust and efficient charging infrastructure, which results 

in additional burden on the power distribution side. The objective of this research 

is to examine the impact of EVCS together with optimal NR and planning (siting 

and size) of DGs and DSTATCOMs on the RDN. The main goal is the 

maximization of technical and economic advantages of the system. Moreover, the 

results of COA are compared to the results of GWO and GA to evaluate its 

accuracy. Two distinct distribution systems have been subjected to four operating 

cases, including EVCSs, DGs, and DSTATCOMs. The impacts of EVCS 

deployment with DGs and DSTATCOM on RDN are also examined in two 

scenarios: WONR and WNR. The following is a summary of the key conclusions 

from the simulation: 
 

– The integration of DG or DSTATCOM is advantageous in minimizing the 

detrimental impact of EVCS on power system performance. However, 

incorporating DG and DSTATCOM simultaneously with NR is a more 

efficient approach to reducing the negative impact of EVCS on the system 

performance. 

– Significant improvements in IRPL reduction, ITVD reduction, and VSI 

enhancement are achieved when EVCS is optimally allocated together with 

DG  

– and DSTATCOM, as well as with NR. 

– Also, the simultaneous approach for optimal planning of EVCS, DG, and 

DSTATCOM with NR results in substantial technical and economic 

benefits. 

– Better convergence characteristics of the COA have been found in 

comparison to the GWO and GA.  

– The COA provides more accurate solutions compared to the GWO and GA. 

6 References 

[1] K. Balu, V. Mukherjee: Optimal Allocation of Electric Vehicle Charging Stations and 

Renewable Distributed Generation with Battery Energy Storage in Radial Distribution System 

Considering Time Sequence Characteristics of Generation and Load Demand, Journal of 

Energy Storage, Vol. 59, March 2023, p. 106533. 

[2] J. S. Bhadoriya, A. R. Gupta, M. Zellagui, N. K. Saxena, A. K. Arya, A. K. Bohre: Optimal 

Allocation of Electric Vehicles Charging Station in Distribution Network Beside DG Using 

TSO, Ch. 29, Planning of Hybrid Renewable Energy Systems, Electric Vehicles and 

Microgrid, Springer, Singapore, 2022. 



Cheetah Optimization Algorithm for Simultaneous Optimal Network Reconfiguration… 

35 

[3] M. Bilal, M. Rizwan, I. Alsaidan, F. M. Almasoudi: AI-Based Approach for Optimal 

Placement of EVCS and DG with Reliability Analysis, IEEE Access, Vol. 9, November 2021, 

pp. 154204 − 154224. 

[4] M. S. Kumar Reddy, K. Selvajyothi: Optimal Placement of Electric Vehicle Charging Station 

for Unbalanced Radial Distribution Systems, Energy Sources, Part A: Recovery, Utilization, 

and Environmental Effects, February 2020, pp. 1 − 15. 

[5] S. Pazouki, A. Mohsenzadeh, S. Ardalan, M.- R. Haghifam: Simultaneous Planning of PEV 

Charging Stations and DGs Considering Financial, Technical, and Environmental Effects, 

Canadian Journal of Electrical and Computer Engineering, Vol. 38, No. 3, Summer 2015, pp. 

238 − 245. 

[6] K. Kathiravan, P. N. Rajnarayanan: Application of AOA Algorithm for Optimal Placement of 

Electric Vehicle Charging Station to Minimize Line Losses, Electric Power Systems 

Research, Vol. 214, Part A, January 2023, p. 108868.  

[7] V. K. B. Ponnam, K. Swarnasri: Multi-Objective Optimal Allocation of Electric Vehicle 

Charging Stations and Distributed Generators in Radial Distribution Systems Using 

Metaheuristic Optimization Algorithms, Engineering, Technology & Applied Science 

Research, Vol. 10, No. 3, June 2020, pp. 5837 − 5844. 

[8] N. Dharavat, S. Kumar Sudabattula, V. Suresh: Optimal Integration of Distributed Generators 

(DGs) Shunt Capacitors (SCs) and Electric Vehicles (EVs) in a Distribution System (DS) 

using Marine Predator Algorithm, International Journal of Renewable Energy Research, Vol. 

12, No. 3, September 2022, pp. 1637 − 1650. 

[9] S. R. Gampa, K. Jasthi, P. Goli, D. Das, R. C. Bansal: Grasshopper Optimization Algorithm 

Based Two Stage Fuzzy Multiobjective Approach for Optimum Sizing and Placement of 

Distributed Generations, Shunt Capacitors and Electric Vehicle Charging Stations, Journal of 

Energy Storage, Vol. 27, February 2020, p. 101117. 

[10] M. Bilal, M. Rizwan: Integration of Electric Vehicle Charging Stations and Capacitors in 

Distribution Systems with Vehicle-to-Grid Facility, Energy Sources, Part A: Recovery, 

Utilization, and Environmental Effects, May 2021, pp. 1 − 30 

[11] A. Pratap, P. Tiwari, R. Maurya, B. Singh: Minimisation of Electric Vehicle Charging Stations 

Impact on Radial Distribution Networks by Optimal Allocation of DSTATCOM and DG 

Using African Vulture Optimisation Algorithm, International Journal of Ambient Energy, 

Vol. 43, No. 1, August 2022, pp. 8653 − 8672. 

[12] K. E. Adetunji, I. W. Hofsajer, A. M. Abu-Mahfouz, L. Cheng: A Novel Dynamic Planning 

Mechanism for Allocating Electric Vehicle Charging Stations Considering Distributed 

Generation and Electronic Units, Energy Reports, Vol. 8, November 2022, pp. 14658 − 14672. 

[13] A. Pratap, P. Tiwari, R. Maurya, B. Singh: A Novel Hybrid Optimization Approach for 

Optimal Allocation of Distributed Generation and Distribution Static Compensator with 

Network Reconfiguration in Consideration of Electric Vehicle Charging Station, Electric 

Power Components and Systems, Vol. 51, No. 13, April 2023, pp. 1302 − 327. 

[14] M. S. Kumar Reddy, K. Selvajyothi: Investment Analysis for Optimal Planning of Electric 

Vehicle Charging Station on a Reconfigured Unbalanced Radial Distribution System, 

Electrical Engineering, Vol. 104, No. 3, June 2022, pp. 1725 − 1739. 

[15] W. S. Tounsi Fokui, M. J. Saulo, L. Ngoo: Optimal Placement of Electric Vehicle Charging 

Stations in a Distribution Network with Randomly Distributed Rooftop Photovoltaic Systems, 

IEEE Access, Vol. 9, September 2021, pp. 132397 − 132411. 

 



A. Pratap, P. Tiwari, R. Maurya, B. Singh 

36 

[16] S. Thumati, S. Vadivel, M. Venu Gopala Rao: Honey Badger Algorithm Based Network 

Reconfiguration and Integration of Renewable Distributed Generation for Electric Vehicles 

Load Penetration, International Journal of Intelligent Engineering and Systems, Vol. 15, No. 

4, August 2022, pp. 329 − 338. 

[17] M. Lavorato, J. F. Franco, M. J. Rider, R. Romero: Imposing Radiality Constraints in 

Distribution System Optimization Problems, IEEE Transactions on Power Systems, Vol. 27, 

No. 1, February 2012, pp. 172 − 180. 

[18] R. S. Rao, K. Ravindra, K. Satish, S. V. L. Narasimham: Power Loss Minimization in 

Distribution System Using Network Reconfiguration in the Presence of Distributed Generation, 

IEEE Transactions on Power Systems, Vol. 28, No. 1, February 2013, pp. 317 − 325. 

[19] A. Pahlavanhoseini, M. S. Sepasian: Scenario-Based Planning of Fast Charging Stations 

Considering Network Reconfiguration Using Cooperative Coevolutionary Approach, Journal 

of Energy Storage, Vol. 23, June 2019, pp. 544 − 557. 

[20] D. Kothona, A. S. Bouhouras: A Two-Stage EV Charging Planning and Network 

Reconfiguration Methodology towards Power Loss Minimization in Low and Medium 

Voltage Distribution Networks, Energies, Vol. 15, No. 10, May 2022, p. 3808. 

[21] S. Kaveripriya, V. Suresh, S. Suresh Kumar, K. Abinaya: Optimal Allocation of DERs in 

Distribution System in Presence of EVs, Proceedings of the 2nd International Conference on 

Power Engineering Computing and Control (PECCON), Chennai, India, December 2019, pp. 

77 − 88.  

[22] H. Tang, J. Wu: Multi-Objective Coordination Optimisation Method for DGs and EVs in 

Distribution Networks, Archives of Electrical Engineering, Vol. 68, No. 1, February 2019, 

pp. 15 − 32. 

[23] S. R. Salkuti: Binary Bat Algorithm for Optimal Operation of Radial Distribution Networks, 

International Journal on Electrical Engineering and Informatics, Vol. 14, No. 1, March 2022, 

pp. 148 − 160. 

[24] M. A. Akbari, M. Zare, R. Azizipanah-abarghooee, S. Mirjalili, M. Deriche: The Cheetah 

Optimizer: A Nature-Inspired Metaheuristic Algorithm for Large-Scale Optimization 

Problems, Scientific Reports, Vol. 12, No. 1, December 2022, p. 10953. 

[25] J. R. S. Mantovani, F. Casari, R. A. Romero: Reconfiguracao de Sistemas de Distribuicao 

Radiais Utilizando o Criterio de Queda de Tensao, SBA Controle and Automacao, Vol. 11, 

No. 3, September 2000, pp. 150 − 159. 

[26] S. Mirjalili, S. M. Mirjalili, A. Lewis: Grey Wolf Optimizer, Advances in Engineering 

Software, Vol. 69, March 2014, pp. 46 − 61. 

[27] D. E. Goldberg, J. H. Holland: Genetic Algorithms and Machine Learning, Machine Learning, 

Vol. 3, No. 2-3, October 1988, pp. 95 − 99. 

[28] S. Deb, K. Tammi, K. Kalita, P. Mahanta: Impact of Electric Vehicle Charging Station Load 

on Distribution Network, Energies, Vol. 11, No. 1, January 2018, p. 178. 

[29] V. Janamala, U. Kamal Kumar, T. K. Sai Pandraju: Future Search Algorithm for Optimal 

Integration of Distributed Generation and Electric Vehicle Fleets in Radial Distribution 

Networks Considering Techno-Environmental Aspects, SN Applied Sciences, Vol. 3, March 

2021, p. 464. 

[30] T. T. Tran, K. H. Truong, D. N. Vo: Stochastic Fractal Search Algorithm for Reconfiguration 

of Distribution Networks with Distributed Generations, Ain Shams Engineering Journal, Vol. 

11, No. 2, June 2020, pp. 389 − 407. 



Cheetah Optimization Algorithm for Simultaneous Optimal Network Reconfiguration… 

37 

[31] S. Rao Gampa, D. Das: Optimum Placement and sizing of DGs Considering Average Hourly 

Variations of Load, International Journal of Electrical Power and Energy Systems, Vol. 66, 

March 2015, pp. 25 − 40. 

[32] K. Balu, V. Mukherjee: Optimal Siting and Sizing of Distributed Generation in Radial 

Distribution System Using a Novel Student Psychology-Based Optimization Algorithm, 

Neural Computing and Applications, Vol. 33, No. 22, November 2021, pp. 15639 − 15667. 

[33] K. R. Devabalaji, K. Ravi: Optimal Size and Siting of Multiple DG and DSTATCOM in 

Radial Distribution System Using Bacterial Foraging Optimization Algorithm, Ain Shams 

Engineering Journal, Vol. 7, No. 3, September 2016, pp. 959 − 971. 

[34] A. Mohamed Imran, M. Kowsalya, D. P. Kothari: A Novel Integration Technique for Optimal 

Network Reconfiguration and Distributed Generation Placement in Power Distribution 

Networks, International Journal of Electrical Power & Energy Systems, Vol. 63, December 

2014, pp. 461 − 472. 

[35] M. Chakravorty, D. Das: Voltage Stability Analysis of Radial Distribution Networks, 

International Journal of Electrical Power & Energy Systems, Vol. 23, No. 2, February 2001, 

pp. 129-135. 

[36] E. S. Oda, A. M. Abd El Hamed, A. Ali, A. A. Elbaset, M. Abd El Sattar, M. Ebeed: Stochastic 

Optimal Planning of Distribution System Considering Integrated Photovoltaic-Based DG and 

DSTATCOM Under Uncertainties of Loads and Solar Irradiance, IEEE Access, Vol. 9, 

February 2021, pp. 26541 − 26555. 

[37] R. D. Zimmerman, C. E. Murillo-Sánchez, R. J. Thomas: MATPOWER: Steady-State 

Operations, Planning, and Analysis Tools for Power Systems Research and Education, IEEE 

Transactions on Power Systems, Vol. 26, No. 1, February 2011, pp. 12 − 19. 

[38] M. A. Kashem, V. Ganapathy, G. B. Jasmon, M. I. Buhari: A Novel Method for Loss 

Minimization in Distribution Networks, Proceedings of the International Conference on 

Electric Utility Deregulation and Restructuring and Power Technologies, London, UK, April 

2000, pp. 251 − 256. 

[39] E. S. Oda, A. A. Abdelsalam, M. N. Abdel-Wahab, M. M. El-Saadawi: Distributed Generations 

Planning Using Flower Pollination Algorithm for Enhancing Distribution System Voltage 

Stability, Ain Shams Engineering Journal, Vol. 8, No. 4, December 2017, pp. 593 − 603. 

 


