
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING 
Vol. 5, No. 2, November 2008, 191-198 

191 

Simple Exponential Stability Criteria 
of Linear Discrete Time-Delay Systems 
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Abstract: In this paper, new delay-independent asymptotic and exponential 
stability conditions of linear discrete delay systems based on the Lyapunov-
Krasovskii method have been derived. A numerical example has been developed 
so as to show applicability of the derived results. 
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1 Introduction 
The problem of stability analysis and controller design for time-delay 

systems have been given considerable attention over the past decades. The 
existing stabilization results for time delay systems can be classified into two 
types, i.e. delay independent stabilization [1-4, 23, 25] and delay-dependent 
stabilization [5-9, 22, 25]. The delay-independent stabilization provides a 
controller which stabilizes a system irrespective of the extent of the delay. On 
the other hand, the delay-dependent stabilization is concerned with the size of 
the delay which usually provides an upper bound of the delay capable of 
ensuring the stability for any delay lower than the upper bound.  

As most physical systems occur in continuous time, consequently the 
theories for stability analysis and controller synthesis are mainly developed for 
the continuous time. However, it is more feasible that a discrete-time approach is 
used for the purpose, as the controller is usually digitally implemented. Despite 
this significance, discrete-time systems with delays: [10-18] have not been paid 
due attention. It is mainly due to the fact that the delay-difference equations with 
known delays can be converted into a higher-order smaller-delay system by 
augmentation approach. However, in systems with great delay extent, this 
scheme will lead to large-dimensional systems. Furthermore, for systems with 
unknown delay the augmentation scheme is not applicable. 
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In this paper, new delay-independent asymptotic and exponential stability 
conditions are presented for discrete state-delayed systems. These conditions are 
derived by Lyapunov - Krasovskii method for discrete time-delay systems.  

2 Notation and Preliminaries 
Review of used notations has been presented in Table 1. 

Table 1 
Used notations 

\ Real vector space 
+] Positive integer 

F Real matrix 
I Identity matrix 
TF Transpose of matrix F  
0F > Positive definite matrix 
0F ≥ Positive semi definite matrix 

( )Fλ Eigenvalue of matrix F  
( )Fσ F= Singular value of matrix 

F ( )max
TA A= λ Euclidean matrix norm of F  

 
A linear, autonomous, multivariable discrete time-delay system can be 

represented by the difference equation 
 ( ) ( ) ( )0 11k A k A k h+ = + −x x x  (1) 

with an associated function of initial state 
 ( ) ( ) { }, , 1, ... , 0h hθ = ψ θ θ∈ − − + Δ�x  (2) 
where 
 ( ) ( ), nx k x k= Ψ ∈\ , θ∈Δ , k +∈] , 

 ( ) ( ) ( ){ } ( ), 1 , ,kx x k h x k h x k x k− − + = + θ� …  

is state vector, 0A and 1
n nA ×∈\  are constant matrices of appropriate dimension 

and h +∈]  is unknown time delay in general case. If ( ), nΔ \D is space of fun-

ctions mapping the discrete interval Δ  into n\ , then, kx ∈D , 
( ) : n∋ φ θ Δ6\D , sup ( )

D
θ∈Δ

φ φ θ�  is the norm of an element φ∈D  in D  

and : nf →\D . If { }: ,
D

γ = φ∈ φ < γ γ∈ ⊂\D D D . 
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Definition 1. The equilibrium state 0x =  of system (1) is globally 
asymptotically stable if any initial ( )ψ θ  which satisfies 

 ( ) ∞ψ θ ∈D  (3) 

holds 
 ( )lim , 0

k
k

→∞
ψ →x . (4) 

Theorem 1. [25] If there are positive numbers α  and β  and continuous 
functional :V →\D  such that 

 ( ) ( )20 , 0, 0 0k k kD
V x x x V< ≤ α ∀ ≠ =  (5) 

 ( ) ( ) ( ) 2
1 ( )k k kV x V x V x x k+Δ − ≤ −β�  (6) 

kx∀ ∈D  satisfying (1) then the solution 0x =  of equation (1) and (2) is global 
asymptotically stable. 
 
Definition 2. Discrete system with time delay (1) is globally asymptotically 
stable if and only if its the solution 0x =  is global asymptotically stable. 
 
Lemma 1. For any two matrices F  and G  of n m×  dimension and for any 
square matrix 0TP P= >  of dimension n, the following statement is true 

 ( ) ( ) ( ) ( )11 1T T TF G P F G F PF G PG−+ + ≤ + ε + + ε , (7) 

where ε  is a positive constant. 

3 Main Results 

Theorem 2. If for any given matrix 0TQ Q= >  there is matrix 0TP P= > , 
being such that the following matrix equation is fulfilled  

 1 02 2
0 0 1 1

0 12 2

1 1T TA A
A PA A PA P Q

A A
⎛ ⎞ ⎛ ⎞
+ + + − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (8) 

Then the system (1) with 0 2
0A ≠ and 1 2

0A ≠  is asymptotically stable. 

 
Proof: As the Lyapunov functional is  

 ( ) ( ) ( ) ( ) ( )
1

0, 0
h

T T T T
k

j
V k P k k j S k j P P S S

=

= + − − = > = ≥∑x x x x x , (9) 
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where 
 ( )k k= + θx x , { }, 1, ... , 0h hθ∈ − − + . (10) 

The forward difference along the solutions of system (1) is 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1

               .

T

k

T T T

V A k A k h P A k A k h

k P k k S k k h S k h

⎡ ⎤ ⎡ ⎤Δ = + − + −⎣ ⎦ ⎣ ⎦
− + − − −

x x x x x

x x x x x x
 (11) 

Applying Lemma 1 on (11), one can get 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0 0

1
1 1

1

            1

            

            

T T
k

T T

T T

T

V k A PA k

k h A PA k h

k P k k S k

k h S k h

−

Δ ≤ + ε

+ + ε − −

− +

− − −

x x x

x x

x x x x

x x

 (12) 

or 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
0 0

1
1 1

1

            1 .

T T
k

T T

V k A PA S P k

k h A PA S k h−

⎡ ⎤Δ ≤ + ε + −⎣ ⎦
⎡ ⎤+ − + ε − −⎣ ⎦

x x x

x x
 (13) 

If one adopts 

 ( )1
1 11 TS A PA−= + ε , (14) 

then 

 ( ) ( ) ( ) ( ) ( )1
0 0 1 1Δ 1 1T T T

kV k A PA A PA P k− ⎤⎡≤ + ε + + ε −⎣ ⎦x x x . (15) 

Let us define the following function 

 ( )( ) ( ) ( ) ( ) ( )1
0 0 1 1, 1 1T T Tf k k A PA A PA k− ⎤⎡ε = + ε + + ε⎣ ⎦x x x  (16) 

Since both matrices 0 0
TA PA  and 1 1

TA PA  are symmetric and positive semi-
definite, then, based on Raleigh and Amir-Moez inequalities, [19, 20], the 
following can be stated:  

  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
max 0 0 max 1 1

1
max max 0 0 max max 1 1

2 1 2
max max 0 max 1

2
max 2

, 1 1

1 1

1 1

.

T T T

T T T

T

f k k A PA A PA k

k P A A P A A k

P k A A k

g P k

−

−

−

⎡ ⎤ε ≤ + ε λ + + ε λ⎣ ⎦
⎡ ⎤≤ + ε λ λ + + ε λ λ⎣ ⎦

⎡ ⎤= λ + ε σ + + ε σ⎣ ⎦

= ε λ

x x x

x x

x x

x

 (17) 

Scalar function 
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 ( ) ( ) ( ) ( ) ( )2 1 2
max 0 max 1g 1 1A A−ε = + ε σ + + ε σ  (18) 

possesses its minimum at 

 
( )
( )

1max 1 2
min

0max 0 2

AA

AA

σ
ε = =

σ
, (19) 

from where  

 ( )( ) ( )( )min , ,f k f kε ≤ εx x . (20) 

As 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
max min

max             

T
k n

T
n

V k P g I P k

k P g I P k

Δ ≤ ⎡λ ε − ⎤⎣ ⎦
≤ ⎡λ ε − ⎤⎣ ⎦

x x x

x x
 (21) 

minε  can be replaced by ε  in (15), whereby 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
min 0 0 min 1 1

1
min 0 0 min 1 1

1 1

             1 1 .

T T T
k

T T T

V k A PA A PA P k

k A PA A PA P k

−

−

⎤⎡Δ ≤ + ε + + ε −⎣ ⎦
⎤⎡≤ + ε + + ε −⎣ ⎦

x x x

x x
 (22) 

If the condition (8) is satisfied then 

 2 2
min min( ) { } ( ) ( ) 0, { } 0ˆkV x Q x k x k QΔ ≤ λ = −β < β = λ > . (23) 

Likewise, for 0kx ≠  holds 

 

1
min 1 1

1

2 21
max min max 1 1

1
max min max 1 1

0 ( ) max ( ) ( ) (1 ) ( ) ( )

{ } (1 ) { } ( ) ( ) ,

{ } (1 ) { } 0,ˆ

h
T T T

k
j

T
D D

T

V x x k Px k x k j A PA x k j

P h A PA x k x k

P h A PA

−

=

−

−

⎧ ⎫
< ≤ + + ε − − ≤⎨ ⎬

⎩ ⎭

⎡ ⎤≤ λ + + ε λ = α⎣ ⎦

α = λ + + ε λ >

∑
 (24) 

thus based on Theorem 1, system (1) is asymptotically stable.  
 

Definition 3. [24] The system (1) is said to have a stability degree α  (or to be 
exponentially stable), with 1α > , being real positive scalar, if the state of system 
given (1) can be written as: 
 ( ) ( )kx k p k−= α  (25) 

and the system governing the state ( )p k  is globally asymptotically stable. In 
this case, the parameter α  is called the convergence rate (see [10] for 
continuous case). 
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Theorem 3.  If for any given matrix 0TQ Q= >  there is the matrix 0TP P= >  
such that the following matrix equation is fulfilled 

 1 02 2( 1)2 2
0 0 1 1

0 12 2

1 1T h T
A A

A PA A PA P Q
A A

+
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟α + + α + − = −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (26) 

then system (1) with 0 2
0A ≠  and 1 2

0A ≠  is exponentially stable, the 

convergence rate being α . 
 
Proof: Let us define a new variable [24]: 
 ( ) ( ) kp k x k= α . (27) 

Then from (1) follows: 
 ( ) ( ) ( )1

0 11 hp k A p k A p k h++ = α + α − . (28) 

Also, the following can be defined: 

 1
0 0 1 1

ˆ ˆ, hA A A A+= α = α  (29) 

then 

 ( ) ( ) ( )0 1
ˆ ˆ1p k A p k A p k h+ = + − . (30) 

The Lyapunov equation (26) is obtained by applying the result of Theorem 2 
on (30). 

4 Numerical Example 
Example 1 
Let us consider a discrete delay system described by 
 ( ) ( ) ( )0 11k A k A k h+ = + −x x x  

 0

0.2 0.3
0.1

A
a

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

0.3 0
0.2 0.1

A
⎡ ⎤

=℘⎢ ⎥
⎣ ⎦

 

where ℘  stands for the adjustable parameter and system scalar parameter, a 
takes the values of –0.15 and 0.5. 
The delay-independent asymptotic stability conditions are characterized by 
means of range of the parameter℘ . These are summarized in Table 2.  

Theorem 2 provides results highly close to the stability boundary. 
Therefore, the derived results are quite precise. 
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Table 2 

Stability conditions in respect of the parameter℘ . 

Parameter a -0.15 + 0.50 
Theorem 2 2.09℘ <  1.51℘ <  

Stability boundary 2.11℘ =  1.52℘ =  
 

Applying Theorem 3 for 0.5a = , 1.2℘= , 2h =  and 1.1α =  leads to the 
conclusion that this system is exponentially stable. 

5 Conclusion 
In this paper, based on Lyapunov-Krasovskii method, new sufficient 

conditions for delay-independent asymptotic and exponential stability of linear 
discrete delay systems are presented. Numerical examples are presented to 
demonstrate the applicability of the present approach. 
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