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Machine Learning for Early Diabetes Screening:  

A Comparative Study of Algorithmic Approaches 

Adem Korkmaz1, Selma Bulut2 

Abstract: Diabetes mellitus, a chronic metabolic disorder, poses a significant 

global health challenge. Early screening and risk assessment are crucial for 

effective management and prevention. This study evaluates the performance of 

various machine learning models – Artificial Neural Networks (ANNs), Random 

Forest (RF), k-nearest Neighbors (k-NN), and Support Vector Machine (SVM) – 

in screening diabetes risk using a dataset based on patient-reported symptoms such 

as age, gender, polyuria, polydipsia, and sudden weight loss. The dataset, 

comprising self-reported data from 520 individuals, highlights the potential 

association of specific symptoms and demographics with diabetes risk. Rigorous 

analysis demonstrates the superior performance of the RF model in terms of 

accuracy and F1 Score. Feature importance analysis further emphasizes the critical 

role of patient-reported symptoms in assessing predisposition to diabetes. The 

findings suggest that with its robust predictive capability, RF is particularly 

suitable for early screening, offering valuable insights into symptom-based 

diabetes risk assessment. This research advances non-invasive, symptom-based 

screening tools, paving the way for early interventions and tailored prevention 

strategies. 

Keywords: Classification Algorithms, Diabetes Detection, Machine Learning, 

Artificial Intelligence. 

1 Introduction 

Diabetes mellitus, characterized by chronic hyperglycemia, is one of the 

most pressing global public health challenges of the 21st century. According to 

the 2021 International Diabetes Federation (IDF) Diabetes Atlas, approximately 

537 million adults aged 20 to 79 live with diabetes. This figure is projected to rise 

to 643 million by 2030 and 783 million by 2045, highlighting the urgent need for 
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comprehensive and effective strategies to address the growing impact of the 

disease. The burden of diabetes is particularly severe in low- and middle-income 

countries, which account for three-quarters of global cases. This disparity 

underscores the complex relationship between diabetes prevalence and socio-

economic factors, further complicating efforts to combat disease globally [1]. 

Diabetes mellitus is a metabolic disorder affecting over 500 million 

individuals worldwide and is primarily characterized by high blood glucose levels 

resulting from impaired insulin production or the body’s inability to utilize 

insulin effectively [1, 2]. Insulin, a hormone produced by pancreatic beta cells, is 

essential for regulating blood glucose levels by promoting glucose uptake into 

cells [3]. The disorder manifests in several forms, each with distinct etiologies 

and clinical features: 

Type 1 Diabetes: Caused by the autoimmune destruction of pancreatic beta 

cells, resulting in an absolute insulin deficiency. While Type 1 diabetes is 

commonly diagnosed in younger individuals, it can manifest at any age. 

Type 2 Diabetes: The more prevalent form, Type 2 diabetes, is primarily 

driven by insulin resistance coupled with inadequate compensatory insulin 

secretion. It is often associated with lifestyle factors such as a sedentary lifestyle, 

poor dietary habits, and obesity [4, 5]. 

Gestational Diabetes: Occurs during pregnancy and generally resolves after 

childbirth, but it significantly increases the risk of developing Type 2 diabetes 

later in life. 

Clinically, diabetes manifests through a range of symptoms, including 

polyuria (increased urination), polydipsia (increased thirst), polyphagia 

(increased hunger), unexplained weight changes, fatigue, delayed wound healing, 

and visual disturbances [6]. However, the early stages of the disease often remain 

undiagnosed, particularly in resource-limited settings where access to advanced 

diagnostic tools is constrained. This high rate of undiagnosed cases emphasizes 

the critical need for alternative, non-invasive, and scalable approaches to risk 

screening, particularly for vulnerable populations. 

Recent advancements in machine learning (ML) offer promising 

opportunities for addressing these challenges. In a study by Katiyar et al. [7], ML 

and deep learning methods demonstrated significant potential in facilitating the 

detection and classification of diabetes. These computational approaches 

leverage large datasets to identify complex patterns and relationships that 

traditional diagnostic methods may overlook. Building on this foundation, the 

current study evaluates the efficacy of ML models for non-invasive, symptom-

based screening of diabetes risk, utilizing a dataset derived from patient-reported 

symptoms, including age, gender, polyuria, polydipsia, and sudden weight loss. 
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Comparison of ML Models: This research compares the performance of four 

ML algorithms-Artificial Neural Networks (ANNs), Random Forest (RF), k-

Nearest Neighbors (k-NN), and Support Vector Machine (SVM)-to determine 

their effectiveness in symptom-based risk screening. These models are selected 

for their proven capacity to handle classification tasks and to identify patterns 

within complex datasets. 

Feature Importance Analysis: A detailed feature importance analysis 

assesses the relative significance of patient-reported symptoms in predicting 

diabetes risk. This analysis not only identifies key attributes but also guides the 

development of targeted screening strategies. 

By aligning machine learning capabilities with symptom-based data, this 

study aims to advance non-invasive and scalable tools for diabetes risk 

assessment. The findings are expected to contribute to the integration of 

computational models into broader healthcare strategies, ultimately improving 

early interventions and outcomes for populations disproportionately affected by 

the disease. 

2 Related Work 

In the advancing field of machine learning for diabetes detection, diverse 

studies have significantly contributed to understanding algorithmic efficacies. 

Komi et al. [8] delved into early diabetes prediction using a suite of data mining 

techniques, such as ANN, ELM, GMM, SVM, and logistic regression, with their 

findings elevating ANN as the most effective. Addressing the needs of rural 

Indian demographics, Ramanujam et al. [9] innovatively developed a 

multilingual decision support system that amalgamates predictive models with 

clinical decision support, facilitating both self-assessment and assisted 

evaluations. 

Furthering this domain, Khaleel and Al-Bakry [10] introduced a model 

grounded in the precision of powerful machine learning algorithms, employing 

measures like precision, recall, and F1-score and harnessing the Pima Indian 

Diabetes Dataset (PIDD) to yield significant predictive results with Logistic 

Regression, Naïve Bayes, and KNN. Tripathi and Kumar [11] investigated early-

stage diabetes prediction using algorithms including LDA, KNN, SVM, and RF, 

with their analysis of the PIDD from the UCI machine learning repository 

demonstrating Random Forest’s superiority in accuracy at 87.66%. Similarly, 

Kaur and Kumari [12] utilized the R data manipulation tool to create and analyze 

diverse prediction models on the Pima Indian diabetes dataset, finding the SVM-

linear model to outshine others in accuracy and precision. 

Xue et al. in [13] employed supervised learning algorithms like SVM, Naive 

Bayes, and LightGBM on a dataset of 520 diabetic and potential diabetic patients, 

concluding that SVM outperformed others with a remarkable accuracy rate of 
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96.54%. Sisodia and Sisodia [14] focused on early-stage diabetes detection using 

Decision Tree, SVM, and Naive Bayes on the PIDD, with Naive Bayes emerging 

as the most accurate at 76.30%. Sarwar et al. [15] provided a comparative analysis 

of various algorithms, including LR, KNN, SVM, RF, and Decision Tree, for 

diabetes prediction, highlighting the high accuracy of SVM and KNN at 77%. 

Lastly, Rawat et al. [16] explored multiple Machine Learning Algorithms for 

diabetes prediction, with their comparative analysis declaring the neural network 

as the most effective, boasting a 98% accuracy rate. 

Collectively, these studies underscore the critical role of machine learning in 

the early detection of diabetes, revealing how different algorithms can be 

optimized based on specific data characteristics and desired outcomes, thus 

paving the way for more effective and tailored approaches in medical diagnostics. 

3 Material and Method 

In this study, medical data from 520 patients, meticulously collected from 

the Sylhet Diabetes Hospital in Bangladesh, were utilized. The dataset 

encompasses responses to a questionnaire with 17 attributes, including 

demographic details, symptoms, and diabetes-associated risk factors [17]. The 

data underwent standardization to balance the effects of feature scale differences 

and were partitioned into an 80% training subset and a 20% testing subset. 

Various classification models such as Random Forest, k-Nearest Neighbors, 

Support Vector Machines, and Artificial Neural Networks were employed. These 

models effectively separate data classes, especially in non-linear contexts, and 

demonstrate the ability to discern complex patterns across different datasets. 

3.1 Dataset 

The previously mentioned 17 attributes are shown in Table 1. These 

attributes encapsulate a blend of demographic details, symptoms, and potential 

risk factors associated with diabetes. The range of attributes includes but is not 

limited to, age, gender, and specific diabetes-related symptoms such as Polyuria, 

Polydipsia, and sudden weight loss. 

A key classification attribute within this dataset is “Class,” a binary indicator 

signifying whether a patient has tested positive (1) or negative (0) for diabetes. 

The dataset consists of 320 positive and 200 negative cases, offering a balanced 

perspective for analysis. The data collection process adhered to stringent 

standards, ensuring the reliability and integrity of the data. All entries are non-

null and have been validated by certified medical professionals, underscoring the 

dataset’s accuracy and applicability. 

The primary objective of employing this dataset is to derive insights into the 

symptomatic patterns and correlations inherent in diabetic conditions, with an 

overarching goal of developing predictive models for diabetes diagnosis [17]. 
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Table 1 

Diabetes Dataset Information. 

# Attribute Data Type Description 

1 Age int64 Age of the patient 

2 Gender int64 The gender of the patient 

3 Polyuria int64 Presence of excessive urination 

4 Polydipsia int64 Presence of excessive thirst 

5 Sudden Weight Loss int64 Presence of sudden and unexplained weight loss 

6 Weakness int64 Feeling of weakness 

7 Polyphagia int64 Presence of excessive hunger 

8 Genital Thrush int64 Presence of a yeast infection in the genital area 

9 Visual Blurring int64 Presence of blurred vision 

10 Itching int64 Presence of itching 

11 Irritability int64 Presence of irritability 

12 Delayed Healing int64 Presence of slow wound healing 

13 Partial Paresis int64 Presence of partial paralysis 

14 Muscle Stiffness int64 Presence of muscle stiffness 

15 Alopecia int64 Presence of hair loss 

16 Obesity int64 Presence of obesity 

17 Class object Positive (1) or Negative (0) for diabetes 

 

3.2 Data preprocessing and models 

The dataset utilized in this research underwent meticulous preprocessing, 

normalization, and partitioning steps before implementing classification models. 

Initially, data normalization was carried out using the X = sc.fit_transform(X) 

command to standardize the feature variables, which is critical to prevent any 

individual feature from disproportionately influencing the model due to scale 

differences. Following normalization, the dataset was strategically divided into 

an 80% training subset and a 20% testing subset, a fundamental step to effectively 

evaluate the models’ performance and generalization capability on unseen data. 
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Fig. 1 – Research methodology steps. 

 

The normalization was conducted using the StandardScaler method, 
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Various models were employed to explore the dataset’s underlying patterns 

for precise classification. These included the RF classifier, k-NN, SVM, and 

ANN. The ANN was constructed using the sequential model API from the Keras 

library with TensorFlow as the backend. Its architecture comprised an input layer, 

hidden layers employing the “ReLU” activation function, and an output layer 

utilizing “sigmoid” activation. 

The training and evaluation of these models followed a rigorous process. 

Models were trained on the training subset, learning to map the relationships 

between features and the target variable. Subsequent evaluations on the testing 

subset assessed their predictive accuracy, robustness, and generalizability to 

unseen data. This comprehensive approach, encompassing diverse model 

architectures from the simplicity of k-NN to the complexity of ANN, facilitates a 

thorough understanding and comparison of different predictive methodologies. 

The findings from this study contribute significantly to developing robust and 

reliable predictive models for diabetes diagnosis. 
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3.3 Modeling and classification 

Random Forest: The Random Forest (RF) classifier, an ensemble learning 

method introduced by Breiman [18], significantly improves prediction accuracy 

and robustness by integrating multiple Classification and Regression Trees 

(CARTs). This method employs a bagging technique where each tree is 

constructed using subsets of training samples drawn with replacement, as 

described by Belgiu and Drăguţ [19]. This process allows for the possibility of 

the same sample being selected multiple times or not in each subset. 

This ensemble generates trees using random vectors independently sampled 

from the input vector. Each tree contributes unit votes for classifying an input 

vector, with the class receiving the most votes being selected as the final 

prediction [20]. The RF method randomly selects features at each decision split 

in the trees to reduce correlation, enhancing both predictive power and efficiency. 

The utilization of RF mitigates the risk of overfitting, demonstrates resilience 

to outliers in the training data, and simplifies parameter setting, notably 

eliminating the need for tree pruning. As a result, RF retains the benefits inherent 

in Decision Trees and frequently surpasses them in performance. This 

enhancement is attributed to the method’s robust voting scheme and capability to 

handle various subsets of variables effectively [18, 21]. 

K-Nearest Neighbors: The k-Nearest Neighbors (kNN) algorithm, a 

nonparametric method for classifying data, has been explored and described by 

several researchers, including Altman [22], Aha et al. [23], Ghosh et al. [24], and 

Jiang et al. [25]. It employs a straightforward two-step process: initially 

identifying the closest data points, termed ‘neighbors,’ and subsequently 

classifying a data point based on these neighbors. The proximity between data 

points is commonly calculated using the Euclidean distance formula: 

( ) ( )
2

,Euclid i ii
D x y x y= − , which measures the direct distance between points 

in the feature space. 

In its operation, kNN classifies a data point by determining its ‘k’ nearest 

neighbors and then assigning it the most common class among them. This method 

exemplifies a lazy learning approach, where the learning process is deferred until 

the classification stage, unlike eager learning methods that involve constructing 

a predictive model during the training phase. 

This unique mechanism endows kNN with significant value in classification 

tasks. It effectively leverages distance metrics to make accurate predictions, 

excelling in scenarios where the relational proximity of data points is a crucial 

determinant of their classification. The simplicity and effectiveness of kNN, 

which requires no assumptions about the underlying data distribution, make it a 

versatile tool for various predictive modeling applications. 
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Support Vector Machines: Support Vector Machines (SVM), initially 

conceptualized by Vapnik and colleagues in 1992 and further developed by 

Cortes and Vapnik [26] in 1995, are rooted in statistical learning theory. Using 

kernel methods, SVMs excel at creating optimal separation between two data 

classes, particularly in non-linear environments. Advanced by Vapnik in 1998, 

SVMs are recognized for their capability to discern complex patterns in diverse 

datasets, extending their applications from text categorization to image and 

handwriting digit recognition [27, 28]. The theoretical underpinnings of SVM, 

such as VC dimension and structural risk minimization, contribute to their 

scalability and flexibility across various domains. The versatility of SVMs is 

augmented by different kernel functions, facilitating the integration of prior 

knowledge into classification tasks, thus playing a pivotal role in their efficacy in 

both linear and non-linear classifications [28, 29]. 

At SVM’s core is finding a hyperplane that best separates the data into 

classes. The equation w mathematically represents this concept   0x b+ =  where 

w is the average vector to the hyperplane, x represents the data points, and b is 

the bias term. The objective is to maximize the margin between the data points of 

different classes, calculated as 2 w . 

The classification decision for a data point is based on the sign of the function 

( )( ) sgn .f x wx b= +  The choice of ‘k’ nearest neighbors determines the class 

assignment, with SVM classifying the data point based on the majority class 

among these neighbors. The versatility of SVM in handling both linear and non-

linear data is significantly enhanced through the use of kernel functions, such as 

polynomial, RBF (radial basis function), and sigmoid, which transform the data 

into a higher-dimensional space where a linear separator is feasible. 

SVM’s strength lies in its ability to handle complex and high-dimensional 

data with high accuracy, making it a robust tool for classification tasks across 

various fields. The careful selection of kernel functions based on the dataset’s 

characteristics is crucial in harnessing the full potential of SVM in both linear and 

non-linear classification scenarios. 

Artificial Neural Network: Artificial Neural Networks (ANNs), advanced 

computational models that mimic the structure and function of natural nervous 

systems, are pivotal in diverse tasks such as classification, estimation, and 

detection. These networks, reflecting the human brain’s complexity, consist of 

units termed neurons or nodes, which form a complex system when functioning 

together. Each node, acting as a computational unit, processes inputs with varying 

complexities, setting ANNs apart from traditional mathematical models due to 

their implicit ability to identify inter-parameter relationships. This characteristic 

significantly elevates their applicability in fields like classification and modeling 

[30, 31]. The architecture of ANNs, inspired by the human brain’s interconnected 
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nerve cells, comprises input, hidden, and output layers, facilitating learning and 

adaptation through input and output data analysis, thus generating new input 

approximations – an invaluable process in engineering for solving complex 

problems [32, 33]. Central to ANNs are three primary components: architecture, 

learning algorithm, and activation function, where the learning algorithm optimizes 

the network’s weights for peak performance [34], and the activation function 

maintains input-output relationship integrity. The learning process in ANNs 

involves a three-stage cycle of output calculation, error evaluation and correction, 

and weight adjustment, embodying a trial-and-error learning method [35]. Within 

each ANN, neurons analogous to human nerve cells comprise inputs (x1, x2, x3,…, 

xn), weights (w1, w2, w3,…, wn), a summing function, an activation function, and an 

output (y), collaboratively processing external information, thus underscoring the 

intricate and potent nature of ANNs in computational modeling [36]. 

Activation functions commonly used in artificial neural networks are as 

follows. 

Rectified Linear Unit (ReLU) function: The ReLU function outputs the input 

directly if it is positive; otherwise, it outputs zero. This function is commonly 

used in hidden layers due to its computational efficiency. 

 ( ) max(0,   )f x x= . (4) 

Sigmoid Function: The Sigmoid function transforms real-valued numbers 

into a range between 0 and 1. It is often used in the output layer for binary 

classification problems. 
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Softmax function: The Softmax function is used for multi-class classification 

problems. It converts a vector of values into probabilities that sum up to 1, making 

it suitable for handling outputs where classification into multiple categories is 

required. 
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Hyperbolic Tangent (Tanh) function: The Tanh function maps real numbers 

between –1 and 1. It is similar to the Sigmoid function but with a different value 

range. 
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Leaky ReLU (Leaky Rectified Linear Unit) function: Leaky ReLU is a 

variation of ReLU that allows a slight gradient ( )x  when the input is negative. 

This helps mitigate the “dead neurons” problem with standard ReLU. 
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4 Results 

 

Fig. 2 – Age distribution of patients. 
 

Fig. 2 illustrates the distribution of diabetes status by age, providing key 

insights into how the disease is concentrated across different age groups. The 

majority of positive diabetes cases are clustered in the 40 to 60 age range, with a 

noticeable peak around the ages of 50 and 55. This suggests that middle-aged 

adults are at a higher risk for developing diabetes, which corresponds with 

established risk factors such as age-related metabolic changes and lifestyle habits. 

Negative cases (non-diabetic) are more evenly distributed across the same age 

range but are fewer in comparison to positive cases. Both positive and negative 

cases are rare among younger individuals (under 30) and older adults (above 70). 

As shown in Fig. 2, these findings highlight the critical importance of early 

detection and intervention in middle-aged adults to prevent the onset and 

progression of diabetes. This age group should be a focal point for screening 

programs and targeted preventive healthcare measures. 

Fig. 3 illustrates the distribution of diabetes status by gender, offering key 

insights into how the disease affects males and females. The graph shows that the 

majority of positive diabetes cases are found among females, with nearly equal 

numbers of male patients also diagnosed as positive. However, the number of 

negative cases (non-diabetic) is significantly higher among males compared to 

females. This suggests that while both genders are susceptible to diabetes, males 
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may have a higher rate of avoiding diagnosis or remaining undiagnosed compared 

to females. The noticeable difference in negative cases between the genders could 

indicate underlying socio-behavioral or biological factors influencing the 

diagnosis and prevalence of diabetes. These findings underscore the importance 

of considering gender as a significant factor in diabetes screening and prevention 

efforts. 

 

Fig. 3 – Gender distribution of patients. 

 

In Table 3, the confusion matrices for four different classification models: 

ANN, RF, k-NN, and SVM—are meticulously represented. The confusion matrix 

is a critical tool in evaluating the efficacy of classification models, elucidating 

the instances of true positives, true negatives, false positives, and false negatives. 

The ANN model demonstrated commendable accuracy with 69 true positives and 

32 true negatives but misclassified one as a false positive and two as false 

negatives. The RF model showcased exemplary precision, predicting 70 true 

positives and 33 true negatives, with only one false negative. The k-NN model, 

with 63 true positives and 31 true negatives, had a slightly higher 

misclassification rate, with two false positives and eight false negatives. The 

SVM model indicated balanced performance with 66 true positives and 28 true 

negatives but also had five false positives and false negatives. Analyzing these 

matrices, the Random Forest model emerges as the most precise, with minimal 

misclassifications, whereas the SVM model seems to have the highest 

misclassification rate. 
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Table 3 

Analysis results of Confusion Matrix. 

  ANN RF k-NN SVM 

 Predicted 

 Class 0 1 0 1 0 1 0 1 

A
ct

u
a

l 

0 32 1 33 0 31 2 28 5 

1 2 69 1 70 8 63 5 66 

 

 

Fig. 4 – Analysis results of the dataset using percentage split. 

 

The analytical results from the study present a comparative evaluation of four 

prominent machine learning models: ANN, RF, k-NN, and SVM. These results 

encapsulate the efficacy of each model in terms of Accuracy, F1-score, Precision, 

and Recall—a comprehensive set of metrics that collectively provide a holistic 

view of model performance. 

The RF algorithm exhibits exceptional performance across all metrics, 

achieving the highest accuracy (0.990) and a perfect recall score (1.000). These 

figures indicate that the RF model not only correctly classified nearly all the 

instances but also managed to identify all the relevant cases as such. Furthermore, 

the RF model demonstrates a remarkable balance between precision (0.971) and 

sensitivity, as reflected by its F1-score (0.985), indicating high reliability and 

validity in its predictive capabilities. 
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In contrast, the ANN model also shows strong performance, with an accuracy 

of 0.971 and an F1-score of 0.955, complemented by precision (0.941) and recall 

(0.970) scores that are only marginally lower than those of the RF model. These 

results suggest that the ANN model is a robust classifier with a solid ability to 

generalize and effectively differentiate between classes. 

The k-NN model, while demonstrating respectable accuracy (0.904), lags 

slightly behind in precision (0.795) and F1-score (0.861), with the recall rate at 

0.939. These figures suggest that while k-NN is generally reliable, it may be 

prone to a higher rate of false positives, as indicated by its lower precision. 

Lastly, the SVM model yields consistent scores across all metrics with 

accuracy, F1-score, precision, and recall at 0.904 and 0.848, respectively. While 

these figures reflect a balanced performance, they also highlight potential areas 

for improvement, particularly regarding the model’s precision and recall balance. 

In summary, the RF model outperforms the other models in this study, 

positioning it as a highly effective tool for predictive tasks in this context. The 

ANN follows closely, affirming its capacity as a powerful alternative. While 

effective, the k-NN and SVM models indicate a need for optimization to reach 

the performance levels of RF and ANN in diabetes classification tasks. 

The analysis presented in Fig. 5 highlights the performance of four machine 

learning models: ANN, RF, k-NN, and SVM, evaluated through tenfold cross-

validation. The results indicate notable variations in the models’ effectiveness 

across the metrics of accuracy, F1-score, precision, and recall. 

The RF model demonstrates superior performance, achieving the highest 

values across all metrics: an accuracy of 0.98, an F1-score of 0.98, a precision of 

0.981, and a recall of 0.98. These results underscore the model’s robustness in 

both identifying positive cases and minimizing false positives and false negatives, 

making it the most reliable classifier for this dataset. 

The SVM model also performs strongly, with an accuracy of 0.923, an F1-

score of 0.923, a precision of 0.926, and a recall of 0.923. While slightly lower than 

RF, SVM showcases high precision and recall, indicating its capability to balance 

between true positive rates and precision effectively. 

The ANN model achieves an accuracy of 0.909, an F1-score of 0.91, a 

precision of 0.918, and a recall of 0.909. These results reflect ANN’s strong 

predictive capacity, albeit slightly behind SVM and RF in overall performance. 

In contrast, the k-NN model shows the lowest performance among the 

evaluated models, with an accuracy of 0.871, an F1-score of 0.872, a precision of 

0.886, and a recall of 0.871. While k-NN demonstrates reasonable effectiveness, 

its performance is less competitive, suggesting it may be less suitable for datasets 

with this level of complexity. 
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Fig. 5 – Analysis results of the dataset using tenfold cross-validation. 
 

In summary, the results indicate that RF is the most effective model for this 

dataset, followed by SVM and ANN, with k-NN trailing. These findings highlight 

the importance of algorithm selection based on dataset characteristics and 

demonstrate the potential of RF and SVM for high-accuracy classifications in 

similar applications. 

4.1 Feature importance 

The attribute importance analysis conducted using the RF model has 

provided vital insights into the significance of each attribute in influencing the 

classification of diabetes. This analysis methodically ranked the attributes based 

on their contribution to the model’s decision-making process, revealing key 

factors that impact classification outcomes. 

Predominantly, Polyuria was identified as the most critical attribute, exerting 

the most significant influence on the classification. This attribute, indicative of 

excessive urination, is a primary symptom of diabetes. Hence, its prominence in 

the model aligns well with medical understanding. Following Polyuria, 

Polydipsia, which denotes intense thirst, was ranked as the second most 

influential attribute, reflecting its status as a cardinal symptom of diabetes. 

Gender emerged as the third most significant attribute, suggesting the 

potential impact of biological differences in the manifestation or progression of 

diabetes. The fourth crucial attribute was Age, highlighting the role of age-related 

physiological changes in diabetes risk. Finally, sudden weight loss, another 

common symptom of diabetes, was identified as the fifth most crucial attribute. 

This underscores its relevance in the clinical presentation of the condition. 
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Fig. 5 – Feature importance ranking with random forest algorithm. 

 

The hierarchical organization of these attributes, with Polyuria and 

Polydipsia at the forefront, followed by Gender, Age, and sudden weight loss, 

provides a nuanced understanding of the interplay between various factors in 

diabetes classification. This arrangement aligns with clinical symptoms and 

demographic influences and enhances our comprehension of the critical 

indicators in diabetes prediction. 

These insights are invaluable for clinicians and researchers, aiding in early 

diagnosis and the formulation of tailored management strategies. Additionally, 

understanding the relative importance of these attributes can lead to more 

effective intervention development and improved risk assessment, ultimately 

contributing to enhanced patient outcomes and more informed healthcare 

approaches. By pinpointing the most influential factors in diabetes classification, 

this analysis paves the way for more targeted and efficient diagnostic procedures, 

facilitating better resource allocation and potentially leading to advancements in 

personalized medicine in diabetes care. 

5 Discussion 

This study explores the application of machine learning (ML) models for 

screening and assessing diabetes risk using patient-reported symptoms, 

addressing the global challenge of diabetes, particularly in low- and middle-

income countries. As emphasized by the International Diabetes Federation (IDF), 

the increasing prevalence of diabetes demands innovative and scalable tools for 

early intervention [1]. By focusing on symptom-based data rather than clinical 

diagnostics, this research provides a non-invasive and accessible approach that 

aligns with global needs, especially in resource-constrained settings. 
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The inclusion of tenfold cross-validation ensures robust evaluation of the ML 
models, reducing biases associated with simple percentage splits and enhancing 
the reliability of the results. Among the tested models – Artificial Neural 
Networks, Random Forest, k-Nearest Neighbors, and Support Vector Machines 
– the RF model emerged as the most effective, achieving the highest metrics 
across all evaluation parameters: accuracy (0.98), precision (0.981), recall (0.98), 
and F1-score (0.98). These results align with prior findings, such as those reported 
by Tripathi and Kumar [11], Sarwar et al. [15], and Islam et al. [17], which also 
highlight RF’s superior performance for similar datasets. RF’s ensemble 
approach, which combines predictions from multiple decision trees, effectively 
minimizes overfitting and enhances predictive accuracy, particularly in high-
dimensional datasets. 

The SVM model, with an accuracy of 0.923 and a precision of 0.926, 
demonstrated balanced and reliable performance, making it a strong alternative 
to RF for diabetes risk screening. These findings are consistent with those of Joshi 
et al. [37], who identified SVM as a robust classifier for complex medical 
datasets. While SVM’s performance was slightly lower than RF, its ability to 
maintain a balance between sensitivity and specificity underscores its utility in 
practical applications. 

The ANN model performed well, achieving an accuracy of 0.909 and an  
F1-score of 0.91. ANNs are particularly adept at capturing non-linear and 
multifaceted patterns in data, as evidenced in prior studies such as Sapon et al. 
[38]. However, the slightly lower precision of ANN compared to RF highlights 
the trade-offs inherent in neural network-based approaches, which may require 
careful tuning to optimize performance. 

In contrast, the k-NN model exhibited the lowest performance, with an 
accuracy of 0.871 and an F1-score of 0.872. Its proximity-based classification 
approach makes it prone to higher false positive rates, particularly in datasets with 
overlapping classes. These limitations suggest that while k-NN can serve as a 
baseline model, it is less suitable for real-world applications without further 
optimization or feature engineering. 

The feature-important analysis conducted within the RF model offered 
valuable insights into the predictors of diabetes risk. Symptoms such as Polyuria 
and Polydipsia, already established as primary indicators of diabetes, emerged as 
the most significant features, corroborating clinical observations and findings 
from Padhi et al. [4, 5]. Additionally, demographic factors like age and gender 
were identified as critical predictors, reinforcing their role in diabetes 
epidemiology. The identification of sudden weight loss as a key feature further 
supports its inclusion in early screening frameworks, highlighting its clinical 
relevance in detecting early signs of diabetes. These findings are consistent with 
Islam et al. [17], who emphasized the importance of both common and less 
common symptoms for early detection through ML models. 
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In light of these findings, the results corroborate the potential of symptom-
based screening tools as emphasized by Islam et al. [17], who demonstrated the 
utility of similar datasets for non-invasive risk prediction. Such tools can be 
instrumental in enabling early interventions, reducing the burden on healthcare 
systems, and improving patient outcomes. The insights from this study not only 
validate the applicability of RF and SVM as leading models for diabetes risk 
screening but also emphasize the importance of algorithm selection based on 
dataset characteristics. This work contributes to the growing body of research 
advocating for data-driven solutions in global health and underscores the 
necessity of scalable, accessible tools for addressing the diabetes epidemic 
effectively. 

6 Conclusion 

This study underscores the transformative potential of machine learning 
(ML) models in enhancing the early screening, diagnosis, and management of 
diabetes mellitus, a condition of growing global concern. By leveraging patient-
reported symptoms and employing robust methodologies such as tenfold cross-
validation, this research provides a comprehensive evaluation of ML models, 
with particular emphasis on their practical utility in healthcare systems, especially 
in resource-limited settings. 

Among the evaluated models, Random Forest consistently demonstrated 
superior performance, achieving the highest accuracy and robustness across all 
evaluation metrics. Its exceptional predictive capability, coupled with its ability 
to perform feature importance analysis, positions RF as a cornerstone in diabetes 
diagnostics. These findings align with prior research by Tripathi and Kumar [11], 
Sarwar et al. [15], and Islam et al. [17], further validating RF’s reliability for non-
invasive diabetes screening and classification tasks. 

The study also highlights the effectiveness of Artificial Neural Networks, 
which, although slightly trailing RF in performance, proved adept at capturing 
complex, non-linear relationships in the dataset. ANNs remain a valuable tool for 
medical diagnostics, particularly with further optimization. In contrast, while 
Support Vector Machines and k-Nearest Neighbors demonstrated respectable 
results, their performance suggests that additional refinement is required to 
maximize their clinical applicability. 

The feature-important analysis within the RF model provided critical insights 
into key predictors of diabetes. Symptoms such as Polyuria and Polydipsia 
emerged as the most significant factors, corroborating clinical observations from 
Padhi et al. [4, 5]. Additionally, demographic factors like age and gender were 
highlighted as critical predictors, emphasizing their role in diabetes 
epidemiology. The identification of sudden weight loss further supports its 
relevance in early detection frameworks, underscoring the need to include these 
features in targeted screening programs. 



A. Korkmaz, S. Bulut 

110 

Integrating ML models like RF into healthcare practices has the potential to 

revolutionize diabetes care by enabling scalable, non-invasive, and accurate 

screening tools. These models can help healthcare systems identify high-risk 

individuals earlier, facilitating timely interventions and reducing the global 

burden of diabetes. Future research should focus on refining these models, 

integrating them into real-world clinical workflows, and expanding their 

application to other chronic conditions. Furthermore, investigating the socio-

behavioral and biological factors influencing model outcomes, particularly 

regarding gender disparities, could enhance the effectiveness of ML-driven 

healthcare solutions. 

In conclusion, this study highlights the critical role of ML models in 

addressing the diabetes epidemic. By improving early detection and offering 

data-driven insights, these models pave the way for more personalized and 

effective healthcare strategies, ultimately improving the quality of life for 

millions affected by this chronic condition. Continued efforts to optimize and 

implement these technologies in diverse clinical settings will be pivotal in 

combating diabetes on a global scale. 
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