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Robust Sensorless Control of BLDC Motor 
using Second Derivative Function 
of the Sum of Terminal Voltages 

Abdelali Boughaba1, Mabrouk Chaabane2, Said Benaggoune3 

Abstract: This paper proposes a new sensorless control method for the speed 
and position control of a BLDC Motor. This sensorless drive technique 
calculates the commutations instants (duration of commutation) by deriving the 
sum of the terminal voltages of the motor (SigVi). Thus, it is possible to estimate 
the rotor position (and back EMF of the motor) by only using measurements of 
the stator line currents and voltages. The implantation of these detectors is easy 
and cheap . This method is quite robust across variations in stator resistance due 
to changes in temperature or frequency. With this method the motor can be 
started without needing the initial position of the rotor. This proposed method is 
validated through extensive simulations at different speeds, and a very 
satisfactory performance has been achieved. 

Keywords: Sensorless, Drive, Control, Brushless DC Motor, Terminal Voltages, 
Trapezoidal Back EMF. 

1 Introduction 

Permanent magnet synchronous motors, and particularly those known as 
being without a collector (brushless motors), have an increasingly important 
use. This development is due to their high efficiency, high power density and 
large torque to inertia ratio [1]. Brushless DC (BLDC) motor is inherently 
electronically controlled, and requires rotor position information for the proper 
commutation of the current [2]. The techniques for control developed until now 
are numerous. Several among them are based on the detection of electromotive 
force waveforms (back EMF) [3]. The implantation of dedicated sensors is an 
operation which is extremely delicate and relatively expensive [4]. However the 
problems related to the cost and reliability of rotor position sensors have 
motivated researchers to develop the position-sensorless BLDC motor drive.  
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Various techniques of control for the BLDC motor have been developed 
over the last few years. Among them are a control strategy based on the 
common DC signal [2], control by a new function of flux estimation [1], and a 
sensorless commutation integrated circuit (IC) for a BLDC motor [5]. 

This paper presents the basis of a new sensorless position estimation 
method by the application of a new concept. This technique is based on the 
derivative function of the sum of the stator phase voltages. The results 
validation has been carried out on a simulation model for the sensorless control 
of a BLDC motor. 

Stabilization is taken into account by integrating a PI speed regulator. 

2 Basic Equations of a BLDC Motor 

2.1 Synchronous motor (PMSM) model 

For controlling and analysing a BLDCM, the structure of a permanent 
magnet synchronous motor (PMSM) is usually used. That means that the 
distribution of the magnetic field is taken as sinusoidal [6]. 

The circuit equations are given by: 

 
.

 X AX BU , (1) 

where 
T

d qI I    X , and 

 
d

d
d d d

q

I V I
I

t L
   


, 

 
d

d
q q q e

d

I V I K
I

t L L
    


, 

 
d

d
e

q L

pK f p
I T

t J J J


   , 

 
d

d t


  , 

with Y CX , where [ ]T
d qI IY , 

1 0 0 0

0 1 0 0

 
  
 

C , and 

dV , qV , dI , qI  – voltages and currents on a (d,q) frame, 

LT  – torque load, 
  – electrical angular velocity, 

eK  – factor torque, 
L  – inductance, 
R  – resistance, 
  – electric time-constant. 
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2.1 Model of BLDC Motor (Trapezoidal Back EMF Form) 

A BLDC motor with trapezoidal back EMF is conventionally modelled in 
the stationary frame using three phases, a, b, c, because EMFs are difficult to 
transform into the d-q reference frame. 

We consider a motor with a permanent magnet mounted on the surface 
(without saliency effects). 

Fig. 1 gives the equivalent circuit of the BLDCM. 

 

Fig. 1 – BLDC motor equivalent circuit. 
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Fig. 2 – Trapezoidal back EMF. 
 

The general voltage equations of the BLDC motor are given as follows: 
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where R  is the stator resistance per phase: 
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L  is the matrix of inductance ( sL , M : self and mutual inductance): 
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and  Ta b ce e ee  is the vector of the trapezoidal back EMF (Fig. 2). 

Equation (2) becomes: 
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where T sL L M  . 

The mechanical equation of motion is: 
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where: 

r  – mechanical speed [rad/s], 

lT  – torque load [N m], 

J  – motor shaft and load inertias [kg m2] 
f  – frictional damping coefficient [N m s/rad m], 

emT  – electromagnetic torque [Nm]. 
 

In a BLDC motor without a neutral connection we have: 

 0a b cI I I   , (6) 

(Every time we have one phase the current is set to zero, and the two others are 
opposed.) 



Robust Sensorless Control of BLDC Motor Using Second Derivative Function... 

279 

3 Proposed Method for Estimation of Rotor Position 

The proposed method is based on the decomposition of the phase currents 
and back EMF by the Fourier transformation. 

The decomposition gives: 

 
4 1

( ) cos sin
6

m
a e e

n

I
i n n

n


  

  , 

 
2 1

( ) sin sin cos cos sin
6 2 6

m
b e e e

n

I
i n n n n n

n

               
 , (7) 

 
2 1

( ) sin sin cos cos sin
6 2 6

m
c e e e

n

I
i n n n n n

n

              
 . 

The equations of the Fourier transformations of a trapezoidal back EMF are 
given as follows: 
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e – electrical rotor position, 

e – electrical speed, 

f – field flux linkage, 

p – pole pair number. 

In order to estimate the rotor position it is necessary to use system (2), 
which gives: 
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Thus, (11) combined with the above condition gives: 
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From (3) we obtain: 
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Fig. 3 illustrates the decomposition of the sum of back EMFs, which is 
clearly nonzero. 

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Decomp into harmonics

time (s)

A
m

pl
itu

de

 

Fig. 3 – Sum of back EMF decomposition. 
 

It is clear from Fig. 3 that the sum of the back EMFs contains information 
about the rotor position. 

From the simulation we can see in Fig. 4 that the error between the sum of 
the terminal voltages (sumVi) and sum of the back EMFs (sumEi) is nearly zero. 

Thus we can use the sum of terminal voltages, which is exactly equal to the 
sum of back EMFs, to estimate the rotor position. The proposed method is 
based on the second derivation of the function of the sum of terminal voltages: 
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Fig. 4 – Error SumVi – SumEi . 

 

Figs. 5a and 5b show the structure of the block diagram, giving the principle 
of the sensorless commutation of BDCM control. The block (time calculation 
switching) generates the control signal of the inverter (conditions given by 
Table 1 are taken into account). Signals from function F require processing and 
adaptation. The maximum value of the reference current is obtained from the PI 
block. The block (current control) is a hysteresis current controller. 
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Fig. 5a – Block diagram of BDCM control with sensorless drive. 
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Fig. 5b – Description of inverter block with BDCM. 

4 BLDC Motor Starting Mode 

The procedure for starting a sensorless drive for the BDCM is so difficult, 
because the rotor has a permanent magnet and its position is unknown. In the 
references we can found several possible procedures for starting a BDCM [7]: 

1 – auxiliary sensor; 
2 – open loop control; 
3 – specific gate pattern; 
4 – arbitrary starting; 
5 – salient-pole motor; 

The arbitrary start-up is the method chosen for this simulation, but in 
practice this method cannot be achieved because, in some cases, it may be 
accompanied by temporary reversed rotation. 

5 BLDC Motor Parameters (Bosch SE-B2.040.060) 

Parameters of the BDCM used in the simulations are all in real units [6]: 
R = 1.43 Ω, Lw = 9.4·10–3 H, f = 0.2158 Wb, J = 1.5·10–3 kgm2, 
f = 2·10–3 Ns/rad, p = 2 pole pairs, Kt = 0.41 Nm/A, 
Rated current = 9.7 A, Rated voltage = 380 V, Peak current = 58 A. 

6 Sensitivity Study and Simulation Results 

As described in the block diagram (Fig. 5), the speed regulation provides 
the module of the current phase. 

The new proposed sensorless drive has been successfully simulated on a 
BLDC Motor with the parameters as given above (Section 5). 



Robust Sensorless Control of BLDC Motor Using Second Derivative Function... 

283 

In this section, the effectiveness of the proposed method of sensorless 
control for a BLDC motor is verified by computer simulation. Several tests 
were conducted to check the performance of the proposed method. In all the 
figures the time axis is scaled in seconds. 

The procedure for energizing the inverter gates are as follows in Table 1. 

Table 1 
Commutation Sequences. 
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Fig. 6 – Block scheme of processing circuit. 

 

Fig. 6 illustrates the block diagram scheme for the processing signals 
( 2 2d (Sig ) diV t ) which contains a ripple near zero, where Va, Vb and Vc are the 
measured terminal voltages and F gives the command signals from the second 
derivative function of SigVi . K is an attenuation coefficient (K < 1) of the 
second derivative function of SigVi. 

6.1 Variation in speed and load torque application 

Fig. 7 presents the speed response and electrical rotor position for the 
variable speed reference. The reaction is quiet, fast and of high accuracy. 

Moreover, in Fig. 8 the tracking performances were improved when a load 
torque is suddenly applied and removed. However, the torque of the BLDC 
motor contains a ripple. 
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These properties make this new method suitable for applications in which 
accuracy and speed are required. 

6.2 Test under constant speed 

Fig. 9 shows the speed response, rotor position, sum of three terminal 
voltages (SigVi), back EMF phase currents, and the crossing zero signal 
(corresponding to signals necessary to energise the gates). 

The sequence from the back EMF zero crossing commutation is clearly 
demonstrated. As we can see, the commutation will occur approximately 30 
electric degrees after the zero crossing of the back EMF. 

6.3 Variation in stator resistance 

The effect of changes in the stator resistance on the new method is 
examined. Fig. 10 describes the performance of the new method for a wide 
variation of stator resistances, and illustrates the results of the simulation with a 
reference speed equal to 100 rad/s, load torque equal to 2 Nm and two values 
for the stator resistance (R = Rn and R = Rn + 150% Rn). This variation in 
resistance will not significantly affect the performance of this new method. 
From this figure we determine a delay time of 400 s. 

Fig. 9 demonstrates the accuracy of the commutation timing. This method 
of calculation of commutation instants (zero crossing) has a very good 
resolution, particularly at low speed when the back EMF amplitude is very low. 
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Fig. 7a – Response obtained with variable reference speed: Speed, Reference Speed. 
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Fig. 7b – Response obtained with variable 
reference speed: Electrical rotor position. 
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Fig. 8 – Response under load torque charge. 
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Fig. 9a – Response of drive under constant speed (with zoom): Wr, Wref. 
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Fig. 9b – Response of drive under constant speed (with zoom): tetae. 
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Fig. 9c – Response of drive under constant speed (with zoom): iabc, tetae, FG. 
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Fig. 9d – Response of drive under constant speed (with zoom): ea, ia, tetae, SigVi, FG. 
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Fig. 9e – Response of drive under constant speed (with zoom): iabc. 
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Fig. 10a – Response under stator resistance change (R = Rn, R = Rn + 1.5Rn): Wr, Wref. 
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Fig. 10b – Response under stator resistance change (R = Rn, R = Rn + 1.5Rn):  
ea, ia, tetae, SigVi, FG (with zoom). 
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Fig. 10c – Response under stator resistance change (R = Rn, R = Rn + 1.5Rn): 
iabc, tetae, FG. 
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8 Conclusion 

A novel robust sensorless drive for a BLDC motor by the calculation of 
commutation instants using the second derivative function of the sum of 
terminal voltages has been presented. This is a different way to use the 
information contained in the terminal voltages. The test results, by simulation, 
verify the analysis and demonstrate the advantages of this new method. These 
results show clearly that the true zero crossing back EMF is exactly contained in 
the sum of terminal voltages. It was shown that the new method possesses good 
robustness against parameter variation, in this case stator resistance. SigVi has a 
few discrete values, and we note that SigVi represents the sum of the terminal 
voltages averaged over each PWM cycle, and that the measured voltages in real 
application should be filtered. Nevertheless, as with most sensorless methods, 
the motor start up procedure still has to be integrated. 
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