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Influence of Phase Noise and  
Interchannel Interference on the Performance  

of Optical Heterodyne FSK Receiver 

M. Stefanović1, D. Milić 

Abstract: The moments approach is generally considered a systematic way to 
perform the analysis of coherent optical systems. Exact moments of the filtered 
signal corrupted by phase noise enable the construction of the Gaussian quadra-
ture rule, which may be used to calculate the system error probability. In this pa-
per, we extend the method to a wider class of systems to include the cases where 
the interchannel interference may be significant. We derive the essential equa-
tions in the matrix form and compare the moments approach with numerical 
simulation and Fokker-Planck approach. To illustrate the results, we apply the 
moment's method to two-channel optical heterodyne FSK system with dual-filter 
receiver structure, and evaluate the required channel spacing to have less than 
1 dB penalty due to crosstalk. 

Keywords: Phase noise, Optical communication, Envelope detection, Interchannel inter-
ference, Frequency shift keying. 

1 Introduction 
Considerable efforts have been devoted to theoretical description of coherent opti-

cal systems, in order to account accurately for the influence of laser phase noise on the 
system performance. During the past decade, several solutions to the problem have been 
presented in the literature [1-7]. Among the solutions, the most widely used are the re-
sults of Taylor expansion method [1] and the moments approach [2, 4, 6]. Both of the 
methods have been used to describe a variety of modulation/demodulation schemes in 
the presence of phase noise [8-15], and the Taylor expansion has been used to set up 
some detailed models of multichannel systems [12, 13]. 

There have been previous attempts to include the impact of interchannel interfer-
ence on the FSK system performance, using the moment's approach [9, 11]. However, 
the potentials of the moments approach were not used to their maximum, and the results 
are mostly qualitatively valid. In [11], for the sake of simplicity the authors neglect the 
phase shift between the consecutive samples and use only the rough worst-case ap-
proximation. This has lead to only an approximate model, even with no influence of 
phase noise. On the other hand, a model corresponding to the mean values with uni-
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formly distributed interference phase is considered in [9]. In both cases [9, 11], the ef-
fects of time shift between the interfering channels were neglected, and only the systems 
with ideally synchronized channels were considered. A comprehensive worst-case analy-
sis of ASK systems, which includes the aforementioned effects is outlined in [12]. How-
ever, the method proposed in [12] uses the leading order Taylor expansion to account for 
the phase noise influence, together with an approach based on the inverse Fourier trans-
form to compute the bit-error rate, as opposed to conditional error probability approach 
[10, 11] that is generally more accurate. In this paper, we outline a procedure that com-
bines the good sides of both the approaches -the worst-case analysis of [12], and the 
conditional error probability approach [10]- to yield the results that should be in closer 
agreement with the real system performance. We apply the procedure to heterodyne 
dual-filter FSK receiver, and calculate the required channel separation for a two-channel 
system. 

2 Moments Evaluation 
Analysis of coherent optical system performance, including the effects of inter-

channel crosstalk, requires the knowledge of probability density function (pdf) of the 
following random variabl 
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or - in envelope detection schemes- its squared modulus. Random phase processes ϕ(t) 
and φ(t) are considered independent [9] Brownian motions [1] with diffusion constants 
2π∆ν, del is channel separation and θ is interference offset phase - constant over the one 
bit duration. Using Taylor expansion of the interference, the leading asymptotic behav-
iour is obtained as [12]: 
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In the above equation, it is convenient to identify the interference as a Gaussian 

random variable with mean r, and variance 
( )22 τπ

ντ∆

eld
. Therefore, it is possible to 

include the last term of the previous equation with other Gaussian noise contributions, 
such as shot and receiver noises [9-11]. However, the deterministic interference term r is 
more complicated to account for. 

Let the moments nm,µ̂  of X be defined as: 

 [ ]nm
nm XXE=µ ,ˆ . (3) 
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where the overbar stands for complex conjugation. Exact moments µi,j, of the filtered 
phase-noisy signal without the influence of interference, are known in symbolic form 
[2, 4, 6], and they can be used to express nm,µ̂ , as we will show. 
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Fig. 1 - Probability density functions of the envelope detector output,  

with and without deterministic interference. Curves are reconstructed from  
the first 12 moments using maximum entropy approach. 

Introducing the notation X = r + z, where 
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according to (2), the moments nm,µ̂  are written as 
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It is convenient to write the forward equation in the matrix form: 

 T
n

T
mnmnm M ρρ=µ ,,ˆ , (7) 

where mnM ,  denotes the moment-matrix of the random variable z, namely: 
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The row-vector kρ  is defined as [ ] kiik r ...,,2,1==ρ , where ri are given by: 
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The moments kk ,µ̂ , which are the moments of the random variable 2X , may 
therefore be obtained as: 

 T
k

T
kkkkk M ρρ=µ ,,ˆ . (11) 

Of course, due to symmetry of the moments µi,j, the moment-matrix is also symmet-
ric: MM T = . 

The described procedure may be generalized to yield the following result: 
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where the matrix kkR ,  is defined as 
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and the ri,j are given by 
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The moment-matrix M̂  of the random variable X may not be real, as this is obvi-

ous from (4) and (6). However, the moments on the main diagonal, which represent the 
moments of the random variable |X| 2, are all real. The matrix also satisfies: 

MM ˆˆ =
∗

, and thus is Hermitian [18]. 

The range of values that random variable |X|2 takes should also be considered. The 
variable is represented as a square modulus of a sum of two vectors: 

 θ∆++=+ cos2222 zrzrzr , (15) 

where ∆θ is a random phase difference between the deterministic interference r and the 
random variable z. Since the variable z satisfies 10 2 ≤≤ z , and it is obviously 

1cos1 ≤θ∆≤− , it is possible to bound the forward expression. It turns out that the gen-
eral inequality is UL xXx ≤≤ 2 , where the lower and upper bounds are: 
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The result may be useful in numerical reconstruction of the pdf from its moments 
using, for example, the maximum entropy estimation. 

3 Application to FSK System 
The moments (11) may be used in a worst-case performance analysis, as we will 

show on the FSK system example. We consider a receiver model as shown in Fig. 3. It is 
a heterodyne polarization control receiver with dual-filter structure. Frequency deviation 
of the incoming FSK signal is considered large and the correlation effects between the 
two receiver branches are neglected [8]. IF filtering is performed using equivalent inte-
grate-and-dump filters with central frequencies tuned to the FSK signal frequencies, and 
with integration time τ. Postdetection filter is a summation device that averages Md con-
secutive detected samples during the bit interval. Shot noise is considered the dominant 
Gaussian noise factor; other Gaussian noise contributions can also be easily included in 
the analysis. Under these conditions, the error probability is computed as derived in [10, 
15]. 
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Fig. 2 - Pdf of the envelope detector output with "best" and "worst" case interference, 

 in logarithmic scale. Curves: full - Fokker-Planck approach,  
dashed - numerical simulation of the random variable X. 

 

 
a) 

 
b) 

Fig. 3 - (a) Block diagram of the FSK receiver model and 
(b) The schematic of channels after balanced detection. 

To include the effects of interchannel interference, we use the results of [11] with 
some modifications. We consider a two-channel heterodyne model with low intermedi-
ate frequency and ideal envelope detection (see e.g. [16]). Interchannel interference is 
therefore the crosstalk from the other channel, which is separated in the electrical do-
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main by the spacing del. The crosstalk will have different influence on the transmission 
of binary "0" and "1". When the binary "0" is transmitted, the crosstalk can never be 
constructive since its squared modulus in "1" branch impairs the decision variable; hence 
the interference phase is irrelevant. The amount of crosstalk changes with channel spac-
ing and with time shift between the data, as explained in [12]. During the transmission of 
binary "1", the effect of crosstalk additionally depends on the relative signal phase in the 
interfering channel. Depending on the interference phase, the crosstalk can be either con-
structive or destructive (see Fig. 1). Since the frequency deviation ∆f is considered large, 
the interference on the "0" branch may be neglected. 

For the given system model, the worst-case error probability is computed as: 

 ( ) ( )0/1
2
11/0

2
1 PPPe += , (17) 

where P(0/1) is the worst-case probability of detecting "0" when binary "1" is transmit-
ted, and vice-versa for P(1/0). The probabilities are computed based on the results of 
[11], which have been modified to reflect the differences in system models and to in-
clude the more accurate statistics of phase-noisy signal with crosstalk. Worst-cases are 
then found by numerical search over the crosstalk time shift and initial phase. 

The following steps outline the procedure of performance evaluation of the FSK re-
ceiver: 

1) Compute the error probability for the single-channel system as in [10]. Opti-
mise the integration time and the number of samples to obtain the best performance for 
the given total laser line width. 

2) With Md optimised in the previous step, and for the given channel spacing, 
compute P(1/0) for the worst-case time shift τ2=1/(2del), (see [12]), during the last sam-
ple. 

3) Compute P(0/1) for arbitrary time shift, initial phase and transition sample, tak-
ing into account the interference phase shift over each sample [12]. For this purpose, use 
(11) and Appendix A to compute the appropriate moments. Using the computer search 
over the variables, find the worst-case performance. 

4) Using (17) and two previous steps, find the sensitivity penalty relative to the 
ideal single-channel case with no phase noise. 

Concerning the step 3, it is not straightforward to obtain the moments of the deci-
sion variable with arbitrary interference phase shift during each sample. To this end, a 
procedure that enables the computation is derived in Appendix A. Once the appropriate 
moments are calculated, a Gaussian quadrature rule can be constructed in order to com-
pute the performance [10, 11]. The procedure is also applicable to step 2, with simpler 
conditions that there is no interference in the signal branch, i.e. all Wi (see Appendix A) 
are equal. 

4 Numerical Results and Discussion 
In Fig.1, we compare the pdf's at the square-law envelope detector output, with, as 

well as without interference. The curves are reconstructed using maximum entropy 
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method and first 12 moments. We have also obtained the densities using the Fokker-
Planck equation [1, 2, 5] to find the joint density of real and imaginary parts of z, and 
then numerically computed the densities of |X|2 for the same r-values. The results 
showed very good agreement with those shown in Fig.1. In Fig.2 we show the pdf re-
sulting form Fokker-Planck approach compared to the results of numerical simulation of 
variable X. The agreement is apparent and general behaviour of the pdf curves is also 
similar to Fig.1. 

Fig.4 shows sensitivity penalty of the FSK receiver due to phase noise and inter-
channel crosstalk. Penalties are calculated relatively to the sensitivity of the single chan-
nel receiver with no phase noise influence, which is 40 photons per bit. In the limit of no 
phase noise, the two-channel system considered requires channel separation del of 2.7 
times the bit rate in order to operate within 1 dB penalty. Phase noise generated by the 
lasers with total line width of 8% of the bit rate causes further sensitivity degradation. 
Wider bandwidths are required to contain the signals and the best single-channel sensi-
tivity is obtained for Md=2, resulting in about 0.6 dB penalty without any crosstalk. Ad-
ditional penalty due to crosstalk from the second channel will be less than 1 dB when the 
channel separation is above 3.6 times the bit rate. However, if the two channels are oper-
ated with exactly the same bit rate, and are synchronized, this should allow closer chan-
nel separation of about 2 times the bit rate. The situation is also beneficial for the system 
without phase noise, where the channel spacing equal to the bit rate would suffice (not 
shown in Fig.4). 

When the total laser line widths equal 26% of the bit rate, the optimum Md value is 
3 and the required channel spacing is about 5.5 times the bit rate. In this case, the syn-
chronization of the channels cannot reduce the required channel separation, although 
somewhat smaller penalties are expected. For the line widths equal to the bit rate, opti-
mum Md is 7 and the required channel separation rises to about 12, while the effects of 
synchronization are less noticeable. Therefore, synchronization may enable closer chan-
nel separation only when the laser line widths are relatively small. When the line widths 
are close or even larger than the bit rate, the difference between synchronized and non-
synchronized systems becomes negligible. 

We would like to emphasize that the performance can be computed asymptotically 
accurate as long as local laser and neighbouring channel transmitting laser have negligi-
ble line widths with respect to the transmitting laser. Moreover, if the neighbouring 
channel transmitter line width is non-negligible, but nevertheless small, the leading order 
asymptotic description (2) of interference term is expected to be valid. As a whole, this 
is a reasonable degree of accuracy, somewhat better than the previous results. However, 
in the real system, all the lasers are expected to have same line widths, and the FSK re-
sults of this paper should therefore be considered approximate. 
V. CONCLUSION 

In this paper, we have presented a procedure that enables the use of moments ap-
proach in detailed analysis of coherent optical systems impaired by phase noise and in-
terchannel interference. Probability density functions obtained with maximum entropy 
reconstruction from the moments have shown close agreement with numerical simula-
tion and the Fokker-Planck approach, indicating a good accuracy of the model. Further-
more, we have set up a model of a heterodyne FSK receiver and applied the procedure to 
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performance evaluation of the two-channel system. We have found that the required 
channel spacing for 1 dB crosstalk penalty is about 2.7 times the bit rate in the worst-
case situation without any influence of phase noise. When total laser line width equals 
the bit rate, the required channel spacing rises to at least 12 times the bit rate. Somewhat 
closer channel spacing may be achieved by synchronizing the two channels, but the op-
eration is expected to yield significant results only if the laser line widths are relatively 
small. 
 

 
Fig. 4 - Worst-case sensitivity penalty of FSK receiver, 

versus the electrical domain channel spacing.  
Curves: full - non-synchronized channels; dashed - synchronized channels. 
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Again, the matrix formulation is convenient because the recursion process can be 
replaced by the multiplication of m matrices. The matrix equation is expressed as 
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where ( )
k

mΣζ  denotes the moment row-vector of the sum of m variables, defined as 
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By proceeding one step further from (A3), it is easy to identify that the moment 

vector ( )mΣζ  equals the first row of the matrix ∏
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