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Abstract: This paper presents theoretical and experimental aspects of Jacobian 

nullspace use in kinematically redundant robots for achieving kinetostatically 

consistent control of their compliant behavior. When the stiffness of the robot 

endpoint is dominantly influenced by the compliance of the robot joints, 

generalized stiffness matrix can be mapped into joint space using appropriate 

congruent transformation. Actuation stiffness matrix achieved by this transfor-

mation is generally nondiagonal. Off-diagonal elements of the actuation matrix 

can be generated by redundant actuation only (polyarticular actuators), but such 

kind of actuation is very difficult to realize practically in technical systems. The 

approach of solving this problem which is proposed in this paper is based on the 

use of kinematic redundancy and nullspace of the Jacobian matrix. Evaluation of 

the developed analytical model was done numerically by a minimal redundant 

robot with one redundant d.o.f. and experimentally by a 7 d.o.f. Yaskawa SIA 

10F robot arm. 

Keywords: Kinematic redundancy, Compliance control, Null space stiffness. 

1 Introduction 

Regardless of its mechanical and kinematical composition, any robot is an 

elastomechanical structure which deforms while interacting with the environment. 

Contrary to other elastomechanical mechanisms, compliant behavior of the 

robot mechanism can be controlled actively.  

Compliance is essential for robot tasks which include constrained motion of 

the robot endpoint, or other movable parts of robot mechanism. Since small 

errors in model acquisition and estimation can be compensated, compliance in 

motion control enables robots to be effectively used in tasks where such errors 

are present. Compliance is important for explorative activities in insufficiently 

structured environment and when the environment changes in time. This also 

includes the environment populated by humans, in which physical proximity 

and physical interaction with humans is expected or planned, as it happens in 

collaborative tasks with human workers on manufacturing lines.  
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Compliance in robot mechanism is assumed to be distributed at joints and 

links, i.e., the mechanical structure which connects neighboring joints. In most 

cases robot links are sufficiently stiff and their contribution to the overall 

compliance of the robot can be neglected. It is worth to mention that this is 

exactly the case in biomechanical systems, like human limbs, for instance. 

For modeling purposes in kinetostatic domain, robot can be considered as a 

kinematic mechanism with rigid links and compliant, or more precise, soft 

joints. Therefore, the study of flexibility concentrated in joints and nature of its 

contribution to the compliance of robot mechanism is of highest practical 

importance. Robot compliant behavior considered in this paper is limited to the 

robots with flexible joints only. 

Probably the earliest investigation of Jacobian nullspace and its use for 

control of secondary tasks execution is related to the research work presented in 

[1]. Later on, this approach is further developed and formulated as the ‘extended 

Jacobian technique’ [2]. The term ‘extended’ is related to the generalization of 

the inverse kinematic problem by superposition of the particular solution for the 

linear mapping defined by Jacobian matrix and associated homogeneous part of 

this mapping which always exists in underdefined linear (and linearized) 

systems like this one which is present in kinematically redundant mechanisms.  

Although the nullspace of redundant robots is deeply studied in kinematic 

domain, this is not the case with their compliant behavior. Although the 

compliance behavior is not explicitly considered, results which are related to the 

Jacobian nullspace and the external force projected into the robot jointspace is 

presented in [3]. Later on, this is addressed explicitly to the robot stiffness 

control in [4]. Probably the most comprehensive study of compliance in 

redundant robot mechanisms and its active control is given in [5]. Despite the 

efforts done in this domain (especially in recent time when applications with 

physical human-robot interaction are exponentially growing [6]), formally 

complete and practically applicable framework of stiffness control based on 

nullspace of kinematically redundant robots still does not exist. 

In our research we have found that the kinematic redundancy can be very 

efficiently exploited to induce the desired robot generalized stiffness only by 

robot internal motion within the associated nullspace. In this context, this paper 

presents very general theoretical and experimental aspects of the use of 

Jacobian nullspace in kinematically redundant robots for achieving 

kinetostatically consistent control of their compliant behavior in the task space. 

The paper is organized as follows: the concept of generalized stiffness and 

jointspace stiffness is given in Section 2; Generalized virtual displacement of 

the robot endpoint and complementary nullspace projector are formulated in 

Section 3; Proposed cost function for canonization of the jointspace stiffness 

matrix is presented in Section 4; Numerical example based on a minimal 
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redundant robot and preliminary experimental results achieved with the 7 d.o.f. 

Yaskawa SIA10F robot arm is given in Section 5. 

2 Generalized Stiffness 

The concept of generalized stiffness is derived from the generalization of 

the robot arm elastomechanical behavior as shown in Fig. 1. In the case of the 

robot arm with flexible joints and rigid links, the endpoint, or equivalently, the 

tool center point (TCP) generalized stiffness, is defined by following equation: 

 0( )TCP x x TCPF K x x K x    , (1) 

where FTCPRm is the external force which excites the robot mechanism at the 

robot TCP (robot-environment contact force), Kx = KTCP  Rmm is the TCP 

generalized stiffness matrix, xRm is the vector of the robot current TCP 

position, and xRm is the TCP displacement vector, induced by FTCP. 

 

Fig. 1 – Reduction of the serial link robot arm to a generalized spring. 

 

Mapping of the generalized stiffness matrix (1) into the robot jointspace can be 

analytically achieved by applying the energy conservation principle [4]: 

 F gW W W W        , (2) 

where δWτ is the virtual work associated with the joint torques, δWF is the work 

associated with the external force, δWg is the work associated with the 

gravitational forces, and δWμ is the virtual work associated with the frictional 

forces. If gravitational and frictional terms are neglected, the equation (2) 

becomes: 

 FW W   , (3) 

that immediately leads to: 
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 T T

TCP TCPq F x    , (4) 

where  is the joint torque vector and qis the corresponding joint displacement 

vector. Substituting: 

 ( )TCPx J q q   , (5) 

into (4) leads to the very important equation which defines mapping of external 

force from the robot task space to the corresponding joint torques vector, and 

vice versa: 

 ( )T

TCPJ q F  . (6) 

This equation can be understood as a matrix relation which defines the 

static balance conditions between the external force applied to the robot TCP 

and corresponding torques which are generated by the joint actuators of the 

robot mechanism. The J (q) stands for Jacobian matrix, which is composed of 

gradients that linearly map displacements of the robot TCP into the robot joint 

displacements. 

External force in (6) can be substituted by the generalized stiffness matrix 

using (1), which leads to the relation:  

 ( ) ( )T

xJ q K J q q   . (7) 

Congruent transformation of the robot TCP stiffness matrix Kx is in fact, 

required linear mapping of the robot mechanism generalized stiffness into the 

jointspace stiffness matrix Kq [7]: 

 ( , ) ( ) ( ),   T n n

x q x x qK K q K J q K J q K R    . (8) 

Elements of the jointspace stiffness matrix (8) are nonlinear functions of 

the generalized stiffness matrix and the robot joint coordinates. It means that the 

jointspace stiffness matrix is sensitive to the robot configuration, i.e., robot 

posture. Also, the jointspace stiffness matrix defined by (8) is in general 

nondiagonal matrix. That means that off-diagonal elements are not equal to 

zero: 

 _ _ _( , ),       0,    q ij q ij xd q ijk f q K k i j     (9) 

As a consequence of previously stated, a nonredundant robot which is 

capable to generate an arbitrary generalized stiffness matrix, needs to be driven 

with the redundant actuators, i.e., polyarticular actuators. For example, in 2 

d.o.f. SCARA robot, an additional third actuator needs to be provided, in 

parallel with already existing monoarticular actuators (Fig. 2). This actuator 

simultaneously affects both joints at the same time (biarticular actuator). In this 

simple example the difference between the jointspace stiffness matrices 

generated by the kinematically nonredundant robot which is driven by the 

monoarticular actuators only: 
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and the same robot, but with additional biarticular actuator: 
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2

q X X
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X q X

k k k
K

k k k

 
   

 (11) 

can be easily recognized. Apparently, the influence of introduced biarticular 

actuator is very strong, since it is present in all entries of the jointspace stiffness 

matrix and, the most important, the off-diagonal elements are no longer equal to 

zero. It is clear that actuation redundancy can provide the robot control system 

with ability to generate an arbitrary desired generalized stiffness matrix of its 

TCP. But, there is one very important problem: the technical complexity of 

redundant actuation, especially the complexity of the actuator which is capable 

to generate the biarticular actuation, is very high. Up to now, no robot which is 

commercially available and driven by redundant actuation concept exists out of 

laboratories.  

 

Fig. 2 – Planar 2 d.o.f. robot arm actuated by biarticular actuator. 

 

It is worth to mention that the actuation redundancy of this type is very 

frequent in biomechanical systems, including human arms [8, 9]. Biarticular 

muscles of a human upper arm are shown in Fig. 3. Two dominant muscles, 

biceps and triceps, simultaneously actuate shoulder and elbow joints. 

In order to solve this problem an analytical framework which is based on 

kinematic redundancy instead of actuation redundancy is developed. Kinematic 

redundancy is technically much simpler to realize than actuation redundancy, 

but its practical application is often faced with extremely high computational 

burden. 
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Fig. 3 – Biarticular muscles in human upper arm that 

redundantly drive shoulder and elbow joints. 

 

3 Generalized virtual displacement 

Starting point of exploiting the kinematic redundancy as a general 

framework for finding technical solutions which satisfy (8) is based on the 

following hypothesis: Within the nullspace of the kinematically redundant robot 

with r redundant degrees of freedom, exists at least one configuration subspace 

with a nonempty set of configurations (robot postures) which simultaneously 

satisfies: 1) the nominal position x0 of the robot TCP point – the primary task, 2) 

the desired generalized stiffness Kxd of the robot TCP - the secondary task (the 

additional tasks must be represented as a function of robot joint coordinates, [1, 

10]), and 3) the canonical form of the corresponding actuation stiffness matrix 

Kq that is consistent with robot desired TCP stiffness matrix Kxd. This 

hypothesis is based on the assumption that the increased mobility / dexterity of 

the kinematically redundant robot mechanism which is actuated by a set of 

variable stiffness monoarticular actuators can effectively generate arbitrary 

desired generalized stiffness of the robot TCP on a technically acceptable way. 

Internal structure of the TCP stiffness matrix is discussed in [11, 12]. 

The nullspace of Jacobian matrix denoted by N(J(q)), is defined as: 

  ( ( )) :   ( ) 0m nJ q q R J q q      . (12) 

Nullspace (12) is in fact a set of nontrivial solutions of the homogeneous 

system of linear equations associated to the Jacobian matrix: 

 ( ) 0nJ q q  . (13) 

Contrary to the nonredundant robot mechanism, inverse kinematic of the 

kinematically redundant robot has a more general solution, which is composed 
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of two components: the nonhomogeneous member, i.e., particular solution qP 

of the nonhomogeneous linear system (5), and the homogeneous member, i.e., 

the solution qN which belong to the nullspace of Jacobian matrix, (13). This 

leads to the definition of the generalized virtual displacement which is 

analytically defined by the following relation: 

 ( ) 0( ) ( )c

P N N Jq q q J q x P q q         , (14) 

where: J +(q) is the generalized inverse of the Jacobian matrix J(q) which 

satisfies Moore-Penrose least norm condition [13], q0 is an arbitrary vector in 

the robot configuration space, and Pc
N(J) is the complementary projector, i.e., an 

operator which projects the vector q0 to the nullspace of Moore-Penrose  

generalized inversion J +(q) of the Jacobian matrix. Equations (12) – (14) are 

graphically shown in Fig. 4. 

 

Fig. 4 – Graphical presentation of the robot configuration and 

operational space, as well as the Jacobian rang space and nullspace. 

 

Homogeneous member in (14) is the formal vehicle which can be used for 

generation of internal motions in the robot mechanism, i.e., selfmotions which 

do not alter the robot TCP position. Since the jointspace stiffness matrix is 

dependant of the robot joint coordinates, (8), internal motions in the Jacobian 

nullspace will affect the jointspace stiffness matrix. In that sense, nullspace 

motion can be used to satisfy secondary task objective, [1, 2]. That is control of 

generalized stiffness of the robot TCP. Since the nullspace motions have no 

influence to the robot TCP motion, equation (14) allows that primary task will 

be accomplished independently. 

Equation (14) can be interpreted as an inference machine that provides 

formally consequent superpostion of the primary task: position and motion 
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control of the robot arm and any other task of secondary priority – 

nonconflincting inclusion of secondary task into primary control task.   

In accordance to [2] and [13], the complementary projector in (14) is 

defined by the following relation: 

 ( ) ( )( ) ( ) ( ) ( )c

N J N JP q I P q I J q J q    , (15) 

while the Moore-Penrose generalized inverse is given by the following relation, 

[13]: 

   1

( ) ( ) ( ) ( )T T n mJ q J q J q J q R
   , (16) 

Relations (14) to (16) are essential for the approach which is proposed in 

this paper. 

4 The Cost Function 

Since in kinematically redundant robot mechanisms TCP force vector can 

be induced by infinite number of robot configurations, an arbitrary vector q0 in 

(14) which is projected into the robot nullspace by the complementary projector 

(15) can be used to control of the robot jointspace stiffness. To do that an 

appropriate cost function has to be defined. Probably the most relevant research 

results are presented in [11] where three cost functions are proposed for the 

general framework for robot TCP stiffness control. 

The main requirement for the cost function is to minimize the influence the 

off-diagonal elements of the jointspace stiffness matrix (8) to the induced 

generalized stiffness matrix of the robot TCP: 

 1( , , ) ( ) ( ) ,   T m m

x q q xK q K t J q K J q K R    , (17) 

which further on leads to the following definition of the nullspace vector 

optimization criterion: 

  0 0 0 min( ), n

q q qd qq q R q K K K K          . (18) 

According to the relation (14) in this paper is proposed the cost function to 

be the Euclidean norm of the off-diagonal elements of the jointspace stiffness 

matrix (8): 

 _ [ ( 1)]
2

( ) ( ) ,nq ij n
u q k q i j


   . (19) 

Relation (19) generates the scalar potential field over the robot 

hyperdimensional configuration space. Since the potential field (19) is a 

nonlinear, continuous, and therefore differentiable function, the gradient 

optimization method can be effectively applied for finding of optimal nullspace 
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joint vector which locally minimizes influence of the cross-joint members of the 

robot jointspace stiffness matrix. This leads to the following relation: 

 0 ( ) ( ),    0q u q u q
q


      


. (20) 

Gradient optimization method is known to be algorithmically stable and 

always converges to the nearest local minimum. This algorithm is discrete in its 

essence, and therefore very suitable for application on digital control systems, 

using the following integration scheme:  

 1( ) ( ) ( )k k kq t q t q t    , (21) 

where q(tk) is defined by (14). 

In order to control the intensity of the q0 vector we multiply it with the 

scaling factor . This scaling factor is very general, intuitive solution, which 

must be somehow related to additional constraints that can enable dynamically 

consistent nullspace displacements in (14). One of the possible intuitive 

solutions is given in [14]. 

In any single integration step of (21), the virtual displacement vector q0 is 

proportional to the negative gradient of the potential field (19). Therefore, it is 

not consistent with the nullspace kinematics of the robot arm mechanism. The 

scalar operator, α > 0, is used to scale the magnitude of the q0. In that context, 

following relation is adopted: 

 
( )

( ) , 0
( )

P k

k

N k

q t
t

q t


    


, (22) 

where β is the global multiplier, which is time independent and defined by the 

supervisor, or by the higher levels of the robot control system. The denominator 

of the fraction member in (22) is the magnitude of the displacement vector qN 

i.e., the cost function gradient projected onto the nullspace of the Jacobian 

pseudoinverse (16) using the complementary projector (14), and its role is to 

normalize the nullspace displacement vector qN. The numerator is the 

magnitude of the qP, which is the minimum norm displacement vector 

generated by the Moore-Penrose pseudoinverse. Note that the vector qP is 

calculated even when the primary task is completed, i.e., for the corresponding 

nullspace motions which are governed by the homogeneous solution qN of the 

(13). As a consequence, the α operator (22) is intrinsically adaptive and 

kinematically consistent. 
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5 Numerical Examples and Experiments 

For evaluation purposes, kinematically redundant planar robot arm with 

2d.o.f. is used with onedimensional task space. This robot has one redundant 

d.o.f. (m = 1 | n = 2 redundant anthropomorphic mechanism) / MRR-R1. The 

geometrical and kinematical variables of MRR-R1 are given in the Fig. 5. The 

analytical model of MRR-R1 is as follows. Direct kinematics of the MMR-R1 

robot is: 

 
1 1 1 2 12

1 1 12 1 2

( )

cos( ); cos( )

x f q l c l c

c q  c q q

  
  

 (23) 

 
Fig. 5 – Model of the minimal redundant robot with 

one redundant degree of freedom/MRR-R1. 

 

Jacobian matrix of the MRR-R1 is given by: 

 
 1,1 1,2 1 1 2 12 2 12

1 1 12 1 2

( ) ( )

          sin( ); sin( )

J(q) J q J q l s l s l s

s q  s q q

        
  

 (24) 

which leads to: 

   1

1 1 1 2 12 2 12

2

 
q

x l s l s l s
q

 
          

. (25) 

Moore-Penrose pseudoinversion of Jacobian matrix (24) is: 

 
1,1

2,1

1,1

2 2

1,1 1,2

1,2

2 2

1,1 1,2

( )

( ) ( ) ( )
( )

( )( )

( ) ( )

J q

J q J q  + J q
J q

J qJ q

J q  + J q






 
            
  

, (26) 

from which inverse kinematic model can be formulated as: 
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   
1 1 1 2 12

12 2

2 2 121 1 2 12 2 12

( ) ,

1
.

q J q x

q l s l s
x

q l s l s l s + l s  

  

    
         

 (27) 

Then the range space of the Jacobian matrix is: 

 

1,1

2,1

1,1

2,1

1

1

2

1 1 2 12
1 2 2

2 12

( )
,

( )

( )
.

( )

J qq
x

q J q

J q l s l s
q q q

J q l s









  
        


    

 (28) 

Then, by transforming of the Jacobian matrix to the equivalent reduced row 

echelon form: 

 

 

 

1

1 1 2 12 2 12

2

1,2 2 12

1,1 1 1 2 12

0,

( ( )) ( ( )) 1 ,

( )
( ) ,

( )

x

x x

q
l s l s l s

q

N J q rref J q a

J q l s
a a q

J q l s l s

 
       

 

  


 (29) 

corresponding nullspace can be immediately analytically formulated: 

 

12 12

21 1 2 12

1,2 2 12
1 2 2

1,1 1 1 2 12

1 0,

( )
.

( )

ql s

ql s l s

J q l s
q q q

J q l s l s

   
      

      


 (30) 

 

 

Fig. 6 – Range space and nullspace of MRR-R1. 
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It is clear from (28) and (30) that the range space and the nullspace of the 

Jacobian matrix (24) are straight line in the robot configuration space. This can 

be graphically depicted as it is given in the Fig. 6. It is worth to mention that the 

range space of the Jacobian matrix and its nullspace are orthogonal spaces (in 

this particular case, it is orthogonal lines). The particular solution of (14) which 

is related to the minimal norm pseudoinverse of Jacobian matrix is also shown 

in the Fig. 6. 

Following the equation (14) the nullspace complementary projector can be 

directly calculated from the equation (15): 

 

   
 

 

1,2 1,1 1,2

2 2 2 2

1,1 1,2 1,1 1,2

( ( ))

1,1 1,2 1,1

2 2 2 2

1,1 1,2 1,1 1,2

1 1 2 12 2 122 12

2 2 2

1 1 2 12 2 12 1 1 2 12

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

c

N J q

J q J q J q

J q  + J q J q  + J q
P

J q J q J q

J q  + J q J q  + J q

l s l s l sl s

 l s l s + l s   l s l s

 
 

   
 
  




 


 
 

       

2

2 12

1 1 2 12 2 12 1 1 2 12

2 2 2 2

1 1 2 12 2 12 1 1 2 12 2 12

,
+ l s  

l s l s l s l s l s

 l s l s + l s   l s l s + l s  

 
 
 
   
   

 (31) 

which finally leads to the components of the nullspace vector which is 

governing the execution of the secondary control task, i.e., shaping of the 

generalized stiffness matrix of the robot TCP: 

 

 

   
 

   

0 0 0 1 0 2

1,2 1,1 1,2

0 1 01 022 2 2 2

1,1 1,2 1,1 1,2

1 1 2 12 2 122 12
01 022 2 2 2

1 1 2 12 2 12 1 1 2 12 2 12

1,1

0 2

1 ( ) ( )   ,

( ) ( ) ( )

( ) ( ) ( ) ( )

,

(

T

N N N

N

N

q J q J q q q q

J q J q J q
q q q

J q  + J q J q  + J q

l s l s l sl s
q q

 l s l s + l s   l s l s + l s  

J
q

        

      

 
   

 

  

 
       

1,2 1,1

01 022 2 2 2

1,1 1,2 1,1 1,2

1 1 2 12 2 12 1 1 2 12
01 022 2 2 2

1 1 2 12 2 12 1 1 2 12 2 12

) ( ) ( )

( ) ( ) ( ) ( )

.

q J q J q
q q

J q  + J q J q  + J q

l s l s l s l s l s
q q

 l s l s + l s   l s l s + l s  

   

  
   

 

 (32) 

Visualization of the MRR-R1 configuration space with the particular and 

nullspace solution of (14) is given in Fig. 7. 
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Fig. 7 – Particular and nullspace solution of MRR-R1 derived from (18). 

 

Since the dimensionality of the task space is m = 1, then the stiffness matrix 

is a scalar, i.e., Kx = kx. Its transformat in the jointspace is then: 

 

2

1,1 1,1 1,2

2

1,1 1,2 1,2

( ) ( ) ( )
 

( ) ( ) ( )
q x

J q J q J q
K k

J q J q J q

 
  

  
, (33) 

and consequently, in accordance to (19), the cost function is: 

  1,1 1,2 2 12 1 1 2 12( ) ( ) ( )x xu q k J q J q k l s l s l s   , (34) 

which finally leads to the gradient optimization function: 

 
 

2

1 2 2 1 1 2 2

0

2 1 2 2 1 2 1 1

sin(2 2 ) sin(2 )

cos( ) 2 sin( ) sin( )

x x

x

k q q l k l q q l
q

k l q q l q q l q

    
       

. (35) 

Generated scalar potential field of the cost function (34) is shown in 

Fig. 8a, together with corresponding stream lines which are calculated using 

relation (35). The potential field (35) is well-behaved and the corresponding 

stream lines converge steadily to the nearest local minima. 

The TCP stiffness map over the entire jointspace is shown in Fig. 8b. This 

stiffness map is derived using equation (17) and the jointspace stiffness matrix 

(33), which is reduced to its diagonal elements only (off-diagonal elements are 

simply disregarded because MRR-R1 robot is not able to generate them). Since 

there exists at least one configuration subspace Q  N(J(q)) with a nonempty 

set of configurations q*Q  Q   which simultaneously satisfies constraints 

2 and 3, it is clear that the hypothesis which is defined in a Section 3 holds 

partially for the MRR-R1 robot.  
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Fig. 8 – (a) Potential field and the corresponding stream lines generated by equation 

(34) and (35); (b) TCP stiffness map of the MRR-R1 over the entire jointspace. 

 

To prove completeness of the defined hypothesis it is necessary to test the 

consistency of the q*Q with the constraint 1. For that purpose a series of 

simulation experiments were performed based on integration scheme (18). In 

Fig. 9 are shown the simulation results which are related to the case when both, 

primary and secondary tasks are active and when the value of β multiplier in the 

α operator (19) is set to 1. The TCP motion of the MRR-R1 robot mechanism 

shown in Fig. 9, leads to the conclusion that the task inference machine (14) 

effectively accomplishes both the primary and secondary task, with stable 

convergence to the secondary task optimum, governed by the cost function (19) 

and the corresponding nullspace motion generator (20). The convergence of the 

secondary task to its optimal value is faster than the convergence of the primary 

task, i.e., the optimal value of the TCP stiffness kx = kxd is achieved in the 

integration step k = 241, while the TCP desired position xd is achieved in the 

integration step k = 359, even though the norms of the particular and nullspace 

displacement are the same (according to (19) and β = 1). 
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Fig. 9 – Simulation results of the MRR-R1 robot motion from x0 =  (l1+l2)/4 = 0.153 m 

up to xd = (l1+l2)/1.2 = 0.510 m and execution of the secondary task – optimization 

of the TCP stiffness: (a) Robot mechanism motion in the operational space; 

(b) TCP stiffness variation; (c) robot motion in the configuration space 

(isopotential lines and corresponding gradients of the cost function 

potential field are shown in the background of the plot). 
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It is important to underline that once achieved, the secondary task optimum 

remains stable, i.e., unaffected by the successive changes of the robot 

configuration before the primary task is completed (integration step k=359). The 

results obtained from the performed simulation experiments clearly show that 

the constraint 1 of the hypothesis stated in the Section 3 can be simultaneously 

satisfied with constraints 2 and 3 by the proposed method in the kinetostatic 

domain. This proves the validity of the proposed hypothesis for the MRR-R1 

robot.  

Detailed analytical study has shown that, from purely mechanical point of 

view, the robot with n – m > 1 redundancy possesses significantly richer 

nullspace capacity then the robot with n – m = 1. 

Real-world physical evaluation was performed using Yaskawa SIA10F 

7d.o.f. anthropomorphic robot arm, reinforced by the dedicated development 

system which turns existing robot controller into entirely open control system.  

For experimental purposes 7 d.o.f. anthropomorphic robot arm is kinematically 

reduced to 3 d.o.f. redundant configuration in horizontal plane to avoid 

influence of gravitational terms (open control system allows to lock the other 4 

d.o.f.). Performed experiments refers to the influence of the robot self motion 

(nullspace motion) to the TCP stiffness parameters. Nullspace stiffness 

measurement setup is shown on Fig. 10. 

 

Fig. 10 – Nullspace stiffness measurement setup. 

 

Recorded displacements of the TCP in horizontal XY plane for 4 postures 

in the robot nullspace induced by constant excitation force of 40N applied in X 

and Y direction is shown on Fig. 11. It is clear the robot nullspace motions have 

a strong influence to the robot TCP generalized stiffness and also that the robot 

compliant behaviour is posture dependant and highly nonlinear. 
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Fig. 11 – Measured influence of the robot self motion to the TCP 

stiffness parameters (Robot: Yaskawa SIA10F at CMSys Lab). 

 

6 Conclusion 

Kinematic redundancy and nullspace of the corresponding Jacobian matrix 

are potentially applicable for effective control of robot TCP compliant behavior 

by canonization of the jointspace stiffness matrix. High degree of kinematic 

redundancy, i.e., r > 1 is essential to achieve good kinetostatic performances – 

need to be mathematically analyzed. Euclidean norm of off-diagonal entries of 

the jointspace stiffness matrix can be effectively used for construction of the 

cost function for optimization of the robot nullspace stiffness in order to 

generate best possible approximate of the desired robot TCP stiffness matrix. 

Problem of computational complexity requires soft-computing (approximate 

reasoning) and similar techniques to be used. Research in that direction should 

be included.  
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