
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING
Vol. 16, No. 1, February 2019, 85-104

UDC: 004.425.032.24:004.43 DOI: https://doi.org/10.2298/SJEE1901085P

85

Online Algorithms for Scheduling Transactions
on Python Software Transactional Memory

Marko Popović1, Branislav Kordić1,
Miroslav Popović1, Ilija Bašičević1

Abstract: Designing online transaction scheduling algorithms is challenging
because one needs to reconcile three opposing requirements: (i) they should be
fast, (ii) they should minimize makespan and maximize throughput, and (iii) they
should produce conflict-free transaction schedules. In this paper we present four
online transaction scheduling algorithms, namely, RR, ETLB, AC, and AAC
algorithm, we prove their correctness and time bounds, and we conduct a
theoretical analysis of the transaction schedules they produce, using three
different workloads (RDW, CFW, and WDW). Finally, we compare various
features of the four algorithms. The results are as expected, as we go from RR,
over ETLB and AC, to AAC algorithms, the quality of the resulting schedules
increases at the cost of increase of algorithm’s time complexity.

Keywords: Parallel programming, Transactional memory, Transaction scheduling,
Algorithms, Time complexity.

1 Introduction

Transaction Memory (TM) is a mechanism based on the concept of
database transactions, which replaces convectional locks with transactions on
multicores [1]. Even though the theoretical foundation of TM is already mature
[2], TM remains an open arena for ongoing research. Leading companies in
industry, such as IBM and Intel, already provide synchronization based on TM
on their multicores, e.g. IBM Blue Gene/Q, zEnterprise, EC12, Power 8 and
Intel Haswell. Besides hardware TMs, researchers have developed many
Software TMs (STMs) and Hybrid TMs (HTMs), with different APIs and
semantics. Still, the main open issue for all TMs is their performance, which
may be significantly reduced in case of high contention among transactions.

Transaction scheduling (a.k.a. contention management) is rather well
studied and widespread in the literature related to multicore systems. In addition
to a few scheduling algorithms with their proven upper and lower bounds, and

1University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia;
E-mails: marko.popovic@rt-rk.uns.ac.rs; branislav.kordic@rt-rk.uns.ac.rs; miroslav.popovic@rt-rk.uns.ac.rs;
ilija.basicevic@rt-rk.uns.ac.rs

M. Popović, B. Kordić, M. Popović, I. Bašičević

86

some impossible results given in [3 – 5], there are algorithms which are
evaluated entirely by experiments, e.g. [6, 7]. Still, besides these and other
contributions, transaction scheduling is a subject of active research worldwide.
In this paper we deal with online transaction scheduling algorithms, which are
especially hard to design.

Designing a good online scheduling algorithm for STM is a challenge
because it needs to fulfill the following opposing requirements: (i) it should be
fast, (ii) it should minimize makespan and maximize throughput, and (iii) it
should produce conflict-free transaction schedules. As a response to this
challenge, in our previous work [8, 9] we developed four algorithms for
scheduling transactions on Python STM (PSTM) [10], namely: (i) Round Robin
(RR) algorithm, (ii) Execution Time based Load Balancing (ETLB) algorithm,
Avoid Conflicts (AC) algorithm, and Advanced Avoid Conflicts (AAC)
algorithm.

In this paper, we briefly present these four online transaction scheduling
algorithms, prove their correctness and time bounds, and conduct a theoretical
analysis of the transaction schedules they produce, using three different
workloads (RDW, CFW, and WDW). Finally, we compare these algorithms’
four features, namely: the time complexity, the quality of resulting transaction
schedules, the average speedup over RR algorithm, and the number of aborts
(the last two features are experimentally evaluated in a complete workload
execution). All the results are as expected; as we go from RR, over ETLB and
AC, to AAC algorithms, the quality of the resulting schedules increases at the
cost of increase of the algorithm’s time complexity.

We would like to emphasize that the main aim of this paper is to provide a
theoretical analysis of scheduling algorithms and transaction schedules. Because
of the limited space, we provide a brief overview of the experimental evaluation
made in our previous research in Section 4, and an interested reader may find all
the details in [9].

2 The Scheduler Architecture and Algorithms

In this section, we present a brief overview of the transaction scheduler
architecture and the four scheduling algorithms developed in our previous
research: RR algorithm, ETLB algorithm, AC algorithm, and AAC algorithm
[8, 9]. Additionally, in this paper we prove their correctness and time bounds.

2.1 The architecture

Let T be an application transaction, T = (f, V), where f is the function to be
executed by T and V defines t-variables used by T,V = (R, W), where R is a set
of t-variables that T only reads and W is a set of t-variables that T writes (and
reads).

Online Algorithms for Scheduling Transactions on Python Software Transactional…

87

The architecture of the system comprises a process scheduler S and n
worker processes iW , 1, ,i n  , which are assigned to n available processors

(or cores). An application adds new transactions to the input queue inQ . The

scheduler S works in phases, where every phase consists of two rounds.

During the first round, S repeats the following steps while inQ is not empty

or after it scheduled K transactions (where K is a parameter that may be tuned in
accordance to the application specific needs): (1) dequeue a transaction T from

inQ , (2) call the configured scheduling algorithm, which in its turn returns an

index i of the worker iW to which T is assigned, and (3) schedule T by

queueing it to the queue iQ which corresponds to the worker iW .

During the second round, S waits for all the scheduled transactions to get
executed by the workers. S does this by waiting for done signals at the worker
output queues, iD , where, 1, ,i n  .

While S waits, every iW executes the transactions, one by one, from

iQ . iW executes each (,)j jT f V by calling the function jf . If the transaction

jT aborts, iW enqueues jT to inQ . Otherwise, it takes the next transaction from

iQ . When the input queue iQ , becomes empty,
i

W enqueues the signal done to

its output queue
i

D . After receiving signals done from all the workers, S

switches back to the first round.

As explained so far, it looks like this architecture rests directly upon
hardware. Although this abstraction helps when dealing with scheduling
algorithms, in realty our transaction scheduler is implemented as an application
level scheduler that rests upon Python runtime, which in turn rests upon the
local OS. Because of this, the real execution timing may vary slightly from the
ideal timing (without interference from OS and Python runtime). As it happens,
these variations may be seen as drifts of transaction release times and durations.

Actually, the main motive to introduce the scheduling phases with two
rounds was to minimize the interference between the application level scheduler
(together with OS and Python runtime) and the scheduled transactions during
the second round, especially on multicores with smaller number of cores.

2.2 RR algorithm

The goal of RR algorithm is to provide load-balancing of the input
workload to the available workers. Since there is no information about input
transactions, it optimistically assumes that they all have the same duration and

M. Popović, B. Kordić, M. Popović, I. Bašičević

88

that they are conflict-free. Thus it simply uses the traditional round-robin
scheduling to achieve its goal.

The implementation of RR algorithm uses the variables n and i . The
algorithm calculates the new value of i by incrementing it with module n , and
returns the previous value of i . The scheduler S then uses the returned value i
to schedule the next transaction.

Theorem 1. RR algorithm evenly distributes input transactions to the n
workers within time  1 per each transaction.

Proof. RR algorithm correctness follows from the fact that incrementing i
with modulo n yields uniform distribution in the interval  0, –1n . Since RR

algorithm performs a constant number of steps per transaction (modulo
increment), its tight bound on execution time per transaction is  1 .

2.3 ETLB algorithm

ETLB algorithm is a greedy scheduling algorithm, which uses the method
for estimating execution times based on log-normal distribution [11], and a
simple approach of machine learning. The method works on a sliding window
of samples of execution times, which are taken during the execution of the
application. Each transaction type has its own sliding window. For the next
sample, the method updates the sliding window of samples and related internal
data, so that it can estimate the value of the next transaction execution time,
when it is necessary.

The ETLB algorithm assumes that the application will perform the initial
calibration by measuring the execution time of every transaction type, and
filling the sliding window with the initial samples. Doing the initial calibration,
the method learns the initial behavior of all the transaction types, so it can
immediately provide the execution time estimation, when it is requested by
worker iW .

During a normal execution, the workers measure the execution times of the
transactions, and update the appropriate sliding windows with new samples.
Thus ETLB represents an adaptive algorithm. As the transaction execution time
changes over time (because of the changes in environment), the estimated time
follows these changes.

Let iL be the workload (cumulative execution time), assigned to the

worker iW , where 1, ,i n  . The ETLB algorithm uses the current values of

iL and the estimated execution time of the next transaction et , in order to
schedule the next transaction to the worker with the least load. In that way, the
ETLB algorithm tries to minimize the makespan and maximize the throughput.

Online Algorithms for Scheduling Transactions on Python Software Transactional…

89

The implementation of the ETLB algorithm uses the variables n , i , et , and

iL , where 1, ,i n  . The algorithm finds the index i of iL with the minimal

value, adds et to iL , and returns the value i . The scheduler S then uses the

returned value of i and schedules the next transaction.

Theorem 2. ETLB algorithm is an online greedy algorithm that schedules
the next input transaction to the least loaded worker within time  n , where

n is the number of workers.

Proof. ETLB algorithm correctness trivially follows from the correctness of
the two Python primitives: (i) the primitive min for finding the minimal element
in the list iL , 1, ,i n  , and (ii) the primitive index for finding the index i of
that element. Since the tight bound on execution time for the composition of
primitives index and min is  n , and the tight bound on transaction execution

time estimation is  1 , the overall tight bound for ETLB algorithm is  n .

2.4 AC algorithm

AC algorithm can be viewed as an extended ETLB algorithm. AC
algorithm, like ETLB algorithm uses the method for determining the transaction
execution times. Unlike ETLB algorithm, AC algorithm checks for a possible
conflict between the next transaction to be scheduled and the already scheduled
transactions. Note that here we present and analyze the simplified version of AC
algorithm, which does not use the notion of worker load unbalance.

Let F be a scheduled transaction,  , ,b eF t t V , where bt is the F’s start

time, et is the F’s end time, and  ,V R W . Let  1 1 1 1, ,b eF t t V be the already

scheduled transaction and  2 1 2 2, ,b eF t t V be the next transaction from inQ .

In this paper we assume that every transaction iF uses all of its t-variables

during its entire life cycle  ,bi eit t . So, there is no need to maintain the access

times for individual t-variables.

Generally, when iF and jF execute on the optimistic STM, with the lazy

conflict detection, like the PSTM, we say that iF attacks jF , if their execution

overlaps in time and if iF finishes before jF , because iF will get committed,

while jF will get aborted. Theoretically, iF and jF can attack each another, if

they finish at the same time, but in reality the PSTM serializes the requests for
commit, so one of these transactions will get committed and the other will get
aborted.

M. Popović, B. Kordić, M. Popović, I. Bašičević

90

The transactions 1F and 2F are in conflict if: (i) 1F attacks 2F or vice
versa, and (ii) if the Bernstein conditions [12] are not satisfied (i.e. there is a
data race between 1F and 2F). Precisely, 1F attacks 2F if:

 2 1 2b e et t t  .

2F attacks 1F if:

 1 2 1b e et t t  .

The Bernstein conditions for 1F and 2F are:

 1 2 {}R W  ,

 2 1 {}R W  ,

 1 2 {}W W  .

AC algorithm uses the following scheduling strategy. Like ETLB
algorithm, it schedules the next transaction to the least loaded worker, if the
resulting schedule is conflict-free. But, if scheduling the next transaction T to
the least loaded worker would lead to a conflict with the already scheduled
transactions, AC algorithm immediately backs-off and conservatively schedules
T to the most loaded worker (because this slot in the schedule is definitely
conflict-free). The advantage of this strategy is that it is relatively fast. The
disadvantage is that by taking the conservative back-off, AC algorithm may
miss a chance to make a better schedule (with shorter makespan), as we show in
Section 3.

The implementation of AC algorithms uses the variables that are already
introduced. Here, we introduce the duration of the transaction, dt , as well as

queues of scheduled transactions per worker, iQF . The algorithm executes the
next steps in order to calculate the required index i :

1. Find the indexes mini and maxi , which correspond to minL and maxL ,
respectively.

2. Set 2T to the next transaction from inQ .

3. Determine the estimated execution time for the transaction of type 2f

and assigns it to the value 2dt .

4. Set mini i ,  2 2 2, ,min min dF L L t V 

5. Inside the loop, for every already scheduled 1F , check if there is a

conflict between 1F and 2F , and break the loop on the first detected
conflict.

Online Algorithms for Scheduling Transactions on Python Software Transactional…

91

6. If a conflict is detected in step 5, set maxi i ,  2 2 2, ,max min dF L L t V 

7. Enqueue 2F at the end of iQF .

8. Return i .

The scheduler uses the return value of i to schedule the current transaction.

Theorem 3. AC algorithm is an online greedy algorithm with conservative
conflict avoidance that schedules the next input transaction T to the least
loaded worker, if this does not cause a conflict; otherwise, it schedules T to the

most loaded worker. Its time complexity is  2O nm , where n is the number of

workers and m is the number of t-variables, if all the transactions read m t-
variables and write (possibly different) m t-variables.

Proof. AC algorithm correctness trivially follows from the correctness of
Python primitives: min, max, and index, as well as the primitives for checking
attacks and Bernstein conditions among pairs of transactions. Time complexity
of all the steps of AC algorithm, except step 5, is  n . In the worst case, the

loop in step 5 has  – 1n passes. We assume iQF lists are short (thus may be

checked in constant time). Time complexity for checking attacks is  1 , and

for checking Bernstein’s conditions is  2m , because finding an intersection

between two sets with m elements takes  2m steps (since we represent sets

as Python lists, see [13]). So, the upper bound on the execution time for step 5

is  2O nm . Since  2O nm dominates on  n , the upper bound for the

complete algorithm is  2O nm .

Remark 1. In our future work we may use hash sets instead of lists, in order to
reduce set intersection bound to  m , and the overall bound to  O nm .

 2.5 AAC algorithm

In this section, we describe AAC algorithm, which is a natural extension of
AC algorithm. The main disadvantage of the conservative scheduling strategy
used by AC algorithm is that if there are more than two workers, a worker that
has the load between the minimal and maximal will not be employed, even
though the new transaction can be scheduled to it, without conflicts with the
already scheduled transactions.

The goal of AAC algorithm is to overcome this disadvantage of AC
algorithm. If the scheduling of the next transaction T to the least loaded worker
would lead to a conflict, AAC algorithm, in contrast to AC algorithm, does not
give up immediately, and does not schedule T to the most loaded worker.

M. Popović, B. Kordić, M. Popović, I. Bašičević

92

Instead it checks the workers, one by one, from the least loaded worker to the
most loaded worker. When it finds the worker to which it can schedule the
transaction without causing conflicts, AAC algorithm schedules the transaction
to it.

The advantage of this scheduling strategy used by AAC algorithm, with
respect to AC algorithm, is that in the general case it finds the schedule with a
shorter makespan [14], and higher throughput. Actually, AAC algorithm finds
the schedule with the shortest makespan possible (this may be trivially shown
by contradiction).

So, to implement AAC algorithm, we introduced a dictionary that projects a
worker index i to its load iL ,   iM i L .

AAC algorithm executes the following steps:

1. Find the indexes mini and maxi which correspond to the minL and maxL ,
respectively.

2. Set 2T to the next transaction from inQ .

3. Determine the estimated execution time for the transaction of type 2f

and assign its value to the variable 2dt .

4. Create M .

5. Set mini i ,  2 2 2, ,min min dF L L t V  , conflictFound = False

6. Iterate through M in the sorted order of worker loads, using the
iteration index i . If the index i reaches maxi , set the indicator
conflictFound to True and exit the loop. If not, for every already
scheduled 1F , check whether there is a conflict between 1F and 2F . If

there is no conflict, set  2 2 2, ,i i dF L L t V  and exit the loops;

otherwise, continue with the execution of the loop.

7. If the conflictFoound is True, set maxi i ,  2 2 2, ,max max dF L L t V  .

8. Enqueue 2F at the end of iQF .

9. Return i .

Theorem 4. AAC algorithm is an online greedy algorithm with exhaustive
conflict avoidance that schedules the next input transaction T to the first
worker, in order from the least to the most loaded worker, where T does not

cause a conflict. Its time complexity is  2 2O n m , where n is the number of

workers and m is the number of t-variables, if all the transactions read m t-
variables and write (possibly different) m t-variables.

Online Algorithms for Scheduling Transactions on Python Software Transactional…

93

Proof. AAC algorithm correctness trivially follows from the correctness of
Python primitives: min, max, and index, as well as the primitives for checking
attacks and Bernstein conditions among pairs of transactions. Time complexity
of all the steps of AAC algorithm, except step 6, is  n . In the worst case, the

two nested loops in step 6 have  2
– 1n passes. We assume iQF lists are short

(thus may be checked in constant time). Time complexity for Python sort is

 ()O n log n , for checking attacks is  1 , and for checking Bernstein’s

conditions is  2m [13]. Since sorting is done before the two nested loops and

 2 2O n m dominates on  ()O n log n , the upper bound on execution time for

the complete algorithm is  2 2O n m .

Remark 2. In our future work we may reduce the bound to  2O n m .

3 Theoretical Analysis of Transaction Schedules

In this section, we present the analysis of the expected results for all the
four algorithms for scheduling transactions, for the three types of the input
workloads, that is the transaction packets (RDW, CFW and WDW), in the form
of expected transaction schedules, for the given number of workers (three and
four workers). In the following three sections we analyze the expected results
for the three given input workloads.

3.1 Analysis for RDW workload

Figure 1 shows the expected transaction schedules for the four transaction
scheduling algorithms (RR, ETLB, AC and AAC), for the input RDW workload
and three workers. The top of Fig. 1 shows the input queue of transactions,
which comprises the sequence of RAA (Read All Accounts) transactions,
named R transactions, and the sequence of MT (Money Transfer) transactions,
named M transactions, where the R transactions are even and the M
transactions are odd. The first R transaction is at the head of the queue. The
expected schedules for individual algorithms are shown below the input queue.

In this case, RR algorithm works by the module of three, so, it assigns the
zeroth R transaction to the worker 0W , then it assigns the first M transaction

to the worker 1W , the second R transaction to the worker 2W , and then it starts
this cycle over again.

ETLB algorithm assigns the zeroth R transaction to the worker 0W , the

first M transaction to the worker 1W , the second transaction R to the worker

2W , then 1W becomes the least loaded, so the algorithm assigns the third M

M. Popović, B. Kordić, M. Popović, I. Bašičević

94

transaction and the fourth R transaction to the worker 1W . Then, the workers

0W and 2W become the least loaded. Because the worker 0W has the smaller
index, the algorithm assigns the fifth M transaction to it, etc.

0
R

2
R

4
R

6
R

8
R

10
R

1
M

3
M

5
M

7
M

9
M

1
1
M

Input queue of transactions

RR schedule

W0

W1

AC raspored

W0

W1

0
R

1
M

3
M

6
R

2
R

5
M

9
M

4
R

7
M

1
1
M

0
R

3
M

6
R

9
M

1
M

4
R

7
M

10
R

2
R

5
M

8
R

1
1
M

ETLB schedule

W0

W1

0
R

5
M

7
M

8
R

1
M

3
M

4
R

9
M

10
R

W2 2
R

6
R

1
1
M

8
R

10
R

AC schedule

W0

W1

0
R

1
M

6
R

7
M

2
R

3
M

8
R

9
M

AAC schedule

4
R

5
M

10
R

1
1
M

W2

W2

W2

Fig. 1 – Transaction schedules for RDW workload and three workers.

AC algorithm assigns the zeroth R transaction to the worker 0W . After

that, the least loaded worker with the smallest index is worker 1W . Since the

Online Algorithms for Scheduling Transactions on Python Software Transactional…

95

scheduling of the first M transaction to 1W would lead to a conflict with the

already scheduled R transaction on 0W , the algorithm assigns the first M

transaction to the worker with the highest workload – 0W . Further on, the
second R transaction goes to the least loaded worker (with the smallest index)

1W , because the second R transaction is not in a conflict with the already

scheduled zeroth R transaction (which executes in parallel on 0W), etc.

AAC algorithm assigns the zeroth R transaction to the worker 0W . The

algorithm can assign the first M transaction neither to the worker 1W , nor to

the worker 2W , because it would make a conflict (with the zeroth R transaction

on the worker 0W), so it assigns it to the worker 0W . Then it assigns the second

R transaction to the worker 1W (because it is not in a conflict with the already

scheduled zeroth R transaction), the third M transaction to the worker 1W
(because it is not in a conflict with the already scheduled first M transaction).
In this step, AAC came to a better schedule than AC algorithm, which, when it
discovers that scheduling the third M transaction to the least loaded worker 2W
would lead to a conflict, immediately gives up searching for a suitable worker,
and (wrongly) assigns this transaction to the worker 0W . Alternatively, after

checking 2W , AAC algorithm checks the next least loaded worker 1W , and finds
that there is no conflict.

Summary of the results in Fig. 1: AAC algorithm made the optimal
(conflict-free) schedule with the shortest makespan, AC algorithm made a
suboptimal (conflict-free) schedule with greater makespan, while RR and ETLB
algorithms made the worst schedules containing conflicts. Interestingly, the
schedule made by RR algorithm has the same initial makespan as the schedule
made by AAC algorithm, but since the latter is conflict-free it is also the final
schedule, whereas the former contains conflicts, so some transactions will be
aborted and, consequently, the final schedule will be greater.

Fig. 2 shows the transaction schedules for RR and ETLB algorithms for the
input RDW workload and four workers. The analysis is similar to the case
shown in Fig. 1, and is therefore skipped.

Fig. 3 shows the transaction schedules for AC and AAC algorithms, for the
input RDW workload and four workers.

AC algorithm functions similarly as in the preceding cases with the three
workers: it assigns the zeroth R transaction to the worker 0W , but the first

transaction cannot be assigned to the workers 1W , 2W and 3W , because it would

lead to a conflict, so the algorithm assigns it to the worker 0W . On the contrary,

M. Popović, B. Kordić, M. Popović, I. Bašičević

96

the second R transaction has no conflict with the already assigned zeroth
transaction, so the algorithm assigns it to the worker 1W . Further on, because

scheduling of the third M transaction on the least loaded worker 2W would
lead to a conflict with the already scheduled zeroth R transaction (on worker

0W), AC algorithm immediately assigns the third M transaction to the most

loaded worker 0W , and by doing so, it misses the chance to make a better
schedule, because the third M transaction does not have a conflict with the first
M transaction (on the worker 0W). AAC algorithm uses this opportunity.

0
R

2
R

4
R

6
R

8
R

10
R

1
M

3
M

5
M

7
M

9
M

1
1
M

Input queue of transactions

RR schedule

W0

W1

W2

ETLB schedule

W0

W1

0
R

5
M

7
M

8
R

1
M

3
M

4
R

9
M

10
R

W2 2
R

6
R

1
1
M

0
R

3
M

6
R

9
M

4
R

7
M

10
R

2
R

5
M

8
R

1
1
M

1
M

W3

W3

Fig. 2 – Transaction schedules for RR and ETLB algorithms,
for RDW workload and four workers.

AC algorithm makes a similar miss when scheduling the fifth M
transaction, because scheduling this transaction to the least loaded worker 3W

would lead to a conflict with the R transactions already scheduled to 0W , 1W ,

and 2W . Thus the algorithm assigns this transaction to the most loaded worker

0W , although it could have assigned this transaction to the worker 1W or to the

worker 2W .

Online Algorithms for Scheduling Transactions on Python Software Transactional…

97

AAC algorithm makes the transaction schedule that allows the fastest
execution completely without conflicts, which in this particular case has the
period of eight transactions, where pairs of transactions are assigned to workers.

Summary for the results in Fig. 2 and Fig. 3: The results are essentially the
same as in Fig. 1 – AAC algorithm made the optimal (conflict-free) schedule
with the shortest makespan, AC algorithm made a suboptimal (conflict-free)
schedule with greater makespan, and RR and ETLB algorithms made the worst
schedules containing conflicts.

0
R

2
R

4
R

6
R

8
R

10
R

1
M

3
M

5
M

7
M

9
M

1
1
M

Input queue of transactions

AC schedule

W0

W1

W2

AAC schedule

W0

W1

0
R

5
M

7
M

8
R

1
M

3
M

4
R

9
M

10
R

W2

2
R

6
R

1
1
M

0
R

3
M

6
R

9
M

4
R

7
M

10
R

2
R

5
M

8
R

1
1
M

W3

1
M

W3

Fig. 3 – Transaction schedules for AC and AAC algorithms,
 for RDW workload and four workers.

3.2 Analysis for CFW workload

Figure 4 shows the expected transaction schedules for all of the algorithms,
for the input CFW workload, and for the two cases: (1) with three and (2) with
four workers. The top of Fig. 4 shows the input queue of transactions, which
comprises the sequence of M conflict-free transactions. The expected
schedules for individual algorithms are shown below the input queue.

M. Popović, B. Kordić, M. Popović, I. Bašičević

98

Considering that there is no conflict between transactions, there is no
concurrency between the workers, and therefore the transactions may be
executed in parallel – three transactions on the three workers, and four
transactions on four workers.

Summary of the results in Fig. 4: All the algorithms made the same
transaction schedules.

Input queue of transactions
1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

1
0
M

1
1
M

Schedule for all the algorithms and three workers

W0

W1

0
M

3
M

6
M

9
M

W2

1
M

4
M

7
M

1
0
M

2
M

5
M

8
M

1
1
M

Schedule for all the algorithms and four workers

W0

W1

0
M

4
M

8
M

W2

W3

1
M

5
M

9
M

2
M

6
M

1
0
M

3
M

7
M

1
1
M

Fig. 4 – Transaction schedules for all the algorithms,
for CFW workload and three or four workers.

3.3 Analysis for WDW workload

Figure 5 shows the transaction schedules for all of the algorithms, for the
input workload WDW and three workers. The top of Fig. 5 shows the input
queue of transactions, which comprises the sequence of WAA (Write All
Accounts) transactions, named W transactions, and the sequence of MT
(Money Transfer) transactions, named M transactions, where the W
transactions are even and the M transactions are odd. The first W transaction
is at the head of the queue. The expected schedules for individual algorithms are
shown below the input queue.

Since RR and ETLB algorithms make no difference between the types of
transactions (they treat W and R transactions as equal), they make the same
transaction schedule for WDW and RDW inputs. The output schedules in Fig. 5

Online Algorithms for Scheduling Transactions on Python Software Transactional…

99

are the same as the schedules in Fig. 1, except that the R transactions in Fig. 1
are replaced with the W transactions in Fig. 5.

On the other hand, AC and AAC algorithms serialize all of the transactions
to the worker 0W , whereas, the worker 1W and 2W stay idle. The reason is that,

after the algorithm assigns the zeroth transaction W to the worker 0W , no other

transaction can be assigned neither to the worker 1W , nor to the worker 2W ,

because this would lead to a conflict with the already scheduled zeroth W
transaction.

0
W

2
W

4
W

6
W

8
W

10
W

1
M

3
M

5
M

7
M

9
M

1
1
M

Input queue of transactions

RR schedule

W0

W1

0
W

3
M

6
W

9
M

1
M

4
W

7
M

10
W

2
W

5
M

8
W

1
1
M

ETLB schedule

W0

W1

0
W

5
M

7
M

8
W

1
M

3
M

4
W

9
M

10
W

W2 2
W

6
W

1
1
M

W2

W0

W1

AC and AAC schedule

W2

0
W

2
W

4
W

6
W

8
W

10
W

1
M

3
M

5
M

7
M

9
M

1
1
M

Fig. 5 – Transaction schedules for all the algorithms,
 for WDW workload and three workers.

Summary of the results in Fig. 5: Since all the transactions are in conflict
with each other, both AC and AAC algorithms made the optimal transaction
schedules by serializing them (so each transaction is executed just once).
Although the transaction schedules made by RR and ETLB algorithms look

M. Popović, B. Kordić, M. Popović, I. Bašičević

100

better at first sight (because it looks like they have shorter makespans), actually
they are worse than the schedules made by AC and AAC algorithms, since they
contain conflicts. Thus some of the transactions will be executed more than
once, and the final makespans will be greater (than the makespans for AC and
AAC algorithms).

The results for the input workload WDW and four workers are essentially
the same as the results on Fig. 5 – both AC and AAC algorithms made optimal
transaction (conflict-free) schedules, whereas RR and ETLB algorithms made
worse schedules (containing conflicts), and are thus not shown here.

4 Brief Overview of Experimental Evaluation

Here we provide a brief overview of the experimental evaluation from [9].
Since PSTM is a new STM for Python, we could not directly use standard
benchmarks, such as STAMP and STMBench7, because they are written for
different languages (C++ and Java) and for STMs with different APIs.
Therefore we used the PSTM-based application Bank and the three workloads,
which we introduced in Section 3 (RDW, CFW, and WDW). In the
experiments, RDW is a mix of 100 R and 100 M transactions, CFW is a packet
of 100 M transactions, and WDW is a mix of 100 W and 100 M transactions.
The parameter K (see Section 2.1) is set to 200.

In the theoretical analysis in Section 3 and the experimental evaluation
presented in this section, we were interested in the worst case scenario that
happens when transactions arrive to inQ immediately one after the other, which
may be seen as a constant distribution with 0 inter-arrival times. In the
experiments, this is achieved by storing the complete workload in inQ at the
beginning of the workload execution.

We conducted the experiments of Intel Core i7-3770@3.40GHz machine
with 16 GB of operating memory, running OS Linux. Since OS uses at least one
core, we could use up to three cores for the worker processes. In [9] we made
the experiments with two workers (not shown here) and with three workers.

We used the relative speedup (S) to compare the performances of two
scheduling algorithms, 1A and 2A . Let both 1A and 2A process the same

workload L, and let 1et and 2et be the corresponding mean execution times of L

using 1A and 2A , respectively. The relative speedup of an algorithm 1A over an

algorithm 2A , for a given workload L, is defined as the ratio 1 2/e eS t t .

Since RR algorithm is the simplest of all the four scheduling algorithms
proposed in this paper, we used it as the baseline for performance analysis. So,
we calculated the relative speedups of ETLB, AC, and AAC algorithms over
RR algorithm.

Online Algorithms for Scheduling Transactions on Python Software Transactional…

101

The experiments with three workers are organized as follows. We made 3
groups of experiments for 3 different workloads. Further on, within each group
of experiments we made 4 sub-groups of experiments for 4 scheduling
algorithms. Finally, we executed the given workload 12 times in each sub-group
of experiments. So, we made 3 × 4 × 12 = 144 experiments all together.

Although we made every possible precaution (disconnecting the target
machine from the net, closing unnecessary processes, etc.), we could not
eliminate the interference from OS on the schedules made by the application
level scheduler. Because of this imperfectness of measurements, even after
eliminating the obvious outliers, some of the experimental results exhibit minor
deviations from the expected theoretical results from Section 3. Therefore, we
did not provide detail statistics, and these results should be regarded as initial
preliminary results. In our future work we plan to conduct more detailed
experiments on some many-core machine, where we expect that it would be
possible to isolate the worker processes from OS and its processes, because they
will execute on different cores.

Table 1 shows the experimental results. The rows of Table 1 correspond to
the type of workload. The elements of the column “T; S” contains the average
execution time in seconds (1st line) and the corresponding relative speedup (2nd
line). The column “A” contains the average of the total number of aborts. The
additional data form [9] is that the average execution time for R and W
transactions is 45 ms and for M transactions is 0.65 ms.

Overall discussion of the experimental results in Table 1 is given in the
next section (Section 5) within the comparison of all the algorithms’ features.

Table 1
Results of Experimental Evaluation for 3 workers from [9].

RR algorithm ETLB algorithm AC algorithm AAC algorithm Alg.

Load T; S A T; S A T; S A T; S A

RDW
2.49

-
1.33

2.96

0.84
70

2.23

1.11
9.33

1.91

1.30
9.33

CFW
0.126

-
0

0.127

0.99
0

0.127

0.99
0

0.127

0.99
0

WDW
6.67

-
88.67

6.44

1.03
97.33

4.57

1.45
1

4.42

1.50
0.67

5 Comparison of the Presented Algorithms’ Features

Here we define four features for each online scheduling algorithm: (i) time
complexity, (ii) resulting schedule quality, (iii) speed-up over RR algorithm,
and (iv) number of aborts. The last two features are defined based on the

M. Popović, B. Kordić, M. Popović, I. Bašičević

102

complete workload execution, which terminates when all the transactions within
a given workload are successfully committed. The speed-up over RR algorithm
is defined as the complete workload makespan for a given algorithm divided by
the complete workload makespan for RR algorithm, whereas the number of
aborts is the number of aborts for complete workload execution.

We analyzed the first two features (complexity and schedules) in this paper.
Recently, we experimentally validated all four algorithms and measured the
values for the last two features (speed-up and number of aborts), for RDW,
CFW, and WDW workloads, on three workers, in our previous work [9].

Table 2 shows all the features (in rows) for all the algorithms (in columns).
We now compare all the presented algorithms for each algorithm’s feature.
These features are related to the three requirements stated in the abstract of the
paper, namely speed of the algorithm is characterized by its time complexity,
the total makespan is indirectly characterized by its average speedup over the
baseline RR algorithm, and the conflict freeness is characterized by the quality
of theoretical initial schedules.

Table 2
Comparison of Online Scheduling Algorithm’s Features.

Feature \ Algorithm RR ETLB AC AAC

Time complexity (1) ()n 2()O nm 2 2()O n m

RDW Confs Confs SuOpt Opt

CFW Opt Opt Opt Opt

Quality of

theoretical

initial schedules WDW Confs Confs Opt Opt

S - 0.84 1.11 1.3 RDW

A 70 70 9.33 9.33

S - 0.99 0.99 0.99 CFW

A 0 0 0 0

S - 1.03 1.45 1.50

Average

Speed-up and

Aborts

(Measured in

arch. with

3 workers)
WDW

A 97.33 97.33 1 0.67

Legend: Confs – with conflicts; SuOpt – suboptimal; Opt - optimal

As we go from RR, over ETLB and AC, to AAC algorithm, their time

complexity increases from  1 , over  n and  2O nm , to  2 2O n m ,

respectively. This is as expected, because as they become more involved, their
time complexity increases. However, if the number of workers n and the
number of used t-variables m are smaller, the corresponding scheduling
overhead, even for AAC, may be tolerable. In the experimental validation [9]
this was exactly the case, since 3n  and 2m  (because we used clever

Online Algorithms for Scheduling Transactions on Python Software Transactional…

103

encoding for R and W sets – for all t-variables, we use a special value ‘*’, thus
for example the set R for RAA transaction has a single element ‘*’).

However, this increase in time complexity pays well in the quality of
resulting theoretical initial schedules. Except for the workload CFW, where all
the algorithms produce the optimal schedules (Opt), RR and ETLB produce the
worst initial schedules (for both RDW and WDW), which contain transaction
conflicts (Confs). AC algorithm produces the optimal schedule for the workload
WDW, and a suboptimal (SuOpt) initial schedule for the workload RDW. The
term suboptimal here means that the initial schedule is conflict-free but its
makespan is longer than the optimal makespan. Finally, only AAC algorithm
produces the optimal initial schedules for all the workloads, so the quality of its
results is the best.

The average speed-up S and the number of aborts A (which were
experimentally measured in the architecture with three workers [9]) are in
accordance with the theoretical transaction schedules. For the workload CFW,
S is 0.99 on average for all other algorithms, and A is 0, for all the algorithms.
ETLB and RR algorithms are the worst: (i) they have the same A on both RDW
and WDW workloads, and (ii) S for ETLB is worse than for RR algorithm
(0.84 for RDW and 1.03 for WDW).

AC and AAC algorithms have a comparable S for WDW, 1.45 and 1.50,
respectively. Finally, AAC algorithm has grater S than AC algorithm for RDW
(1.3 > 1.11), so AAC produced the best schedule. Note that although both AC
and AAC algorithms produced conflict-free schedules for both RDW and WDW
workloads, some aborts occurred during the complete workload execution (A is
not equal to 0), because we conducted the experiments on the quad-core PC,
and only one core was not enough for all the system processes, so local OS
Linux compromised the initial conflict-free schedules made by AC and AAC
algorithms (we mentioned this possibility in Section 2.1).

6 Conclusion

In this paper we presented four online transaction scheduling algorithms,
namely, RR, ETLB, AC, and AAC algorithm, proved their correctness and time
bounds, and conducted a theoretical analysis of the transaction schedules they
produce, using three different workloads (RDW, CFW, and WDW). Finally, we
compared various features of the four algorithms. The theoretical results are as
expected: as we go from RR, over ETLB and AC, to AAC algorithms, the
quality of resulting schedules increases at the cost of increase of algorithm’s
time complexity. The experimental results for the average speedup and the
number of aborts, in the complete workload execution, which were measured in
the architecture with three workers, are in accordance with the theoretical
results. For our future work we plan a more detailed experimental evaluation on

M. Popović, B. Kordić, M. Popović, I. Bašičević

104

a many-core machine, research on tuning the parameter K, and further research
on scheduling algorithms.

7 Acknowledgments

This work is partially supported by the Ministry of Education, Science, and
Technology Development of Republic of Serbia under Grant III-44009-2.

8 References

[1] M. Herlihy, J. E. B. Moss: Transactional Memory: Architectural Support for Lock-Free Data
Structures, Proceeding of the 20th Annual International Symposium on Computer
Architecture, San Diego, California, USA, May 1993, pp. 289 – 300.

[2] T. Harris, J. Larus, R. Rajwar: Transactional Memory, 2nd Edition, Morgan and Claypool,
Madison, Wisconsin, USA, 2010.

[3] R. Guerraoui, M. Herlihy, B. Pochon: Toward a Theory of Transactional Contention
Managers, Proceeding of the 24th annual ACM Symposium on Principles of Distributed
Computing, Las Vegas, USA, July 2005, pp. 258 − 264.

[4] H. Attiya, L. Epstein, H. Shachnai, T. Tamir: Transactional Contention Management as a
Non-Clairvoyant Scheduling Problem, Algorithmica, Vol. 57, No. 1, May 2010, pp. 44 − 61.

[5] H. Attiya, A. Milani: Transactional Scheduling for Read-Dominated Workloads, Journal of
Parallel and Distributed Computing, Vol. 72, No. 10, October 2012, pp. 1386 − 1396.

[6] W. N. Scherer, M. L. Scott: Advanced Contention Management for Dynamic Software
Transactional Memory, Proceeding of the 24th Annual ACM Symposium on Principles of
Distributed Computing, Las Vegas, USA, July 2005, pp. 240 − 248.

[7] R. M. Yoo, H.-H. S. Lee: Adaptive Transaction Scheduling for Transactional Memory
Systems, Proceeding of the 20th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, Munich, Germany, June 2008, pp. 169 − 178.

[8] M. Popovic, B. Kordic, I. Basicevic: Transaction Scheduling for Software Transactional
Memory, 2nd International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), Chengdu, China, April 2017, pp. 191 − 195.

[9] M. Popovic, B. Kordic, M. Popovic, I. Basicevic: Advanced Algorithm for Scheduling TM
Transactions with Conflict Avoidance, 25th Telecommunications Forum (TELFOR 2017),
Belgrade, Serbia, November 2017, pp. 844 − 847.

[10] M. Popovic, B. Kordic: PSTM: Python Software Transactional Memory, 22nd
Telecommunications Forum (TELFOR 2014), Belgrade, Serbia, November 2014, pp. 1106
− 1109.

[11] M. Popovic, B. Kordic, I. Basicevic: Estimating Transaction Execution Times for a
Software Transactional Memory, 6th International Conference on Information Science and
Technology, Dalian, China, May 2016, pp. 137 − 141.

[12] A. J. Bernstein: Analysis of Programs for Parallel Processing, IEEE Transactions on
Electronic Computers, Vol. EC-15, No. 5, October 1966, pp. 757 – 763.

[13] Time Complexity, Available at: https://wiki.python.org/moin/TimeComplexity.

[14] M. Popovic, B. Kordic, I. Basicevic: Work, Span, and Parallelism of Transactional Memory
Programs, 4th Eastern European Regional Conference on the Engineering of Computer
Based Systems, Brno, Czech Republic, August 2015, pp. 59 − 66.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [467.717 666.142]
>> setpagedevice

