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Abstract: Designing online transaction scheduling algorithms is challenging 
because one needs to reconcile three opposing requirements: (i) they should be 
fast, (ii) they should minimize makespan and maximize throughput, and (iii) they 
should produce conflict-free transaction schedules. In this paper we present  four 
online transaction scheduling algorithms, namely, RR, ETLB, AC, and AAC 
algorithm, we prove their correctness and time bounds, and we conduct a 
theoretical analysis of the transaction schedules they produce, using three 
different workloads (RDW, CFW, and WDW). Finally, we compare various 
features of the four algorithms. The results are as expected, as we go from RR, 
over ETLB and AC, to AAC algorithms, the quality of the resulting schedules 
increases at the cost of increase of algorithm’s time complexity. 

Keywords: Parallel programming, Transactional memory, Transaction scheduling, 
Algorithms, Time complexity. 

1 Introduction 

Transaction Memory (TM) is a mechanism based on the concept of 
database transactions, which replaces convectional locks with transactions on 
multicores [1]. Even though the theoretical foundation of TM is already mature 
[2], TM remains an open arena for ongoing research. Leading companies in 
industry, such as IBM and Intel, already provide synchronization based on TM 
on their multicores, e.g. IBM Blue Gene/Q, zEnterprise, EC12, Power 8 and 
Intel Haswell. Besides hardware TMs, researchers have developed many 
Software TMs (STMs) and Hybrid TMs (HTMs), with different APIs and 
semantics. Still, the main open issue for all TMs is their performance, which 
may be significantly reduced in case of high contention among transactions. 

Transaction scheduling (a.k.a. contention management) is rather well 
studied and widespread in the literature related to multicore systems. In addition 
to  a few scheduling algorithms with their proven upper and lower bounds, and 
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some impossible results given in [3 – 5], there are algorithms which are 
evaluated entirely by experiments, e.g. [6, 7]. Still, besides these and other 
contributions, transaction scheduling is a subject of active research worldwide. 
In this paper we deal with online transaction scheduling algorithms, which are 
especially hard to design. 

Designing a good online scheduling algorithm for STM is a challenge 
because it needs to fulfill the following opposing requirements: (i) it should be 
fast, (ii) it should minimize makespan and maximize throughput, and (iii) it 
should produce conflict-free transaction schedules. As a response to this 
challenge, in our previous work [8, 9] we developed four algorithms for 
scheduling transactions on Python STM (PSTM) [10], namely: (i) Round Robin 
(RR) algorithm, (ii) Execution Time based Load Balancing (ETLB) algorithm, 
Avoid Conflicts (AC) algorithm, and Advanced Avoid Conflicts (AAC) 
algorithm. 

In this paper, we briefly present these four online transaction scheduling 
algorithms, prove their correctness and time bounds, and conduct a theoretical 
analysis of the transaction schedules they produce, using three different 
workloads (RDW, CFW, and WDW). Finally, we compare these algorithms’ 
four features, namely: the time complexity, the quality of resulting transaction 
schedules, the average speedup over RR algorithm, and the number of aborts 
(the last two features are experimentally evaluated in a complete workload 
execution). All the results are as expected; as we go from RR, over ETLB and 
AC, to AAC algorithms, the quality of the resulting schedules increases at the 
cost of increase of the algorithm’s time complexity. 

We would like to emphasize that the main aim of this paper is to provide a 
theoretical analysis of scheduling algorithms and transaction schedules. Because 
of the limited space, we provide a brief overview of the experimental evaluation 
made in our previous research in Section 4, and an interested reader may find all 
the details in [9]. 

2 The Scheduler Architecture and Algorithms 

In this section, we present a brief overview of the transaction scheduler 
architecture and the four scheduling algorithms developed in our previous 
research: RR algorithm, ETLB algorithm, AC algorithm, and AAC algorithm 
[8, 9]. Additionally, in this paper we prove their correctness and time bounds. 

2.1 The architecture 

Let T be an application transaction, T = (f, V), where f is the function to be 
executed by T and V defines t-variables used by T,V = (R, W), where R is a set 
of t-variables that T only reads and W is a set of t-variables that T writes (and 
reads). 
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The architecture of the system comprises a process scheduler S  and n  
worker processes iW , 1, ,i n  , which are assigned to n  available processors 

(or cores). An application adds new transactions to the input queue inQ . The 

scheduler S  works in phases, where every phase consists of two rounds. 

During the first round, S repeats the following steps while inQ  is not empty 

or after it scheduled K transactions (where K is a parameter that may be tuned in 
accordance to the application specific needs): (1) dequeue a transaction T  from 

inQ , (2) call the configured scheduling algorithm, which in its turn returns an 

index i  of the worker iW  to which T is assigned, and (3) schedule T by 

queueing it to the queue iQ  which corresponds to the worker iW . 

During the second round, S  waits for all the scheduled transactions to get 
executed by the workers. S  does this by waiting for done signals at the worker 
output queues, iD , where, 1, ,i n  . 

While S  waits, every iW  executes the transactions, one by one, from 

iQ . iW  executes each ( , )j jT f V  by calling the function jf . If the transaction 

jT  aborts, iW  enqueues jT  to inQ . Otherwise, it takes the next transaction from 

iQ . When the input queue iQ , becomes empty, 
i

W  enqueues the signal done to 

its output queue 
i

D . After receiving signals done from all the workers, S 

switches back to the first round. 

As explained so far, it looks like this architecture rests directly upon 
hardware. Although this abstraction helps when dealing with scheduling 
algorithms, in realty our transaction scheduler is implemented as an application 
level scheduler that rests upon Python runtime, which in turn rests upon the 
local OS. Because of this, the real execution timing may vary slightly from the 
ideal timing (without interference from OS and Python runtime). As it happens, 
these variations may be seen as drifts of transaction release times and durations. 

Actually, the main motive to introduce the scheduling phases with two 
rounds was to minimize the interference between the application level scheduler 
(together with OS and Python runtime) and the scheduled transactions during 
the second round, especially on multicores with smaller number of cores. 

2.2 RR algorithm 

The goal of RR algorithm is to provide load-balancing of the input 
workload to the available workers. Since there is no information about input 
transactions, it optimistically assumes that they all have the same duration and 
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that they are conflict-free. Thus it simply uses the traditional round-robin 
scheduling to achieve its goal. 

The implementation of RR algorithm uses the variables n  and i . The 
algorithm calculates the new value of i  by incrementing it with module n , and 
returns the previous value of i . The scheduler S  then uses the returned value i  
to schedule the next transaction. 

Theorem 1. RR algorithm evenly distributes input transactions to the n  
workers within time  1  per each transaction. 

Proof. RR algorithm correctness follows from the fact that incrementing i  
with modulo n  yields uniform distribution in the interval  0, –1n . Since RR 

algorithm performs a constant number of steps per transaction (modulo 
increment), its tight bound on execution time per transaction is  1 . 

2.3 ETLB algorithm 

ETLB algorithm is a greedy scheduling algorithm, which uses the method 
for estimating execution times based on log-normal distribution [11], and a 
simple approach of machine learning. The method works on a sliding window 
of samples of execution times, which are taken during the execution of the 
application. Each transaction type has its own sliding window. For the next 
sample, the method updates the sliding window of samples and related internal 
data, so that it can estimate the value of the next transaction execution time, 
when it is necessary. 

The ETLB algorithm assumes that the application will perform the initial 
calibration by measuring the execution time of every transaction type, and 
filling the sliding window with the initial samples. Doing the initial calibration, 
the method learns the initial behavior of all the transaction types, so it can 
immediately provide the execution time estimation, when it is requested by  
worker iW . 

During a normal execution, the workers measure the execution times of the 
transactions, and update the appropriate sliding windows with new samples. 
Thus ETLB represents an adaptive algorithm. As the transaction execution time 
changes over time (because of the changes in environment), the estimated time 
follows these changes. 

Let iL  be the workload (cumulative execution time), assigned to the 

worker iW , where 1, ,i n  . The ETLB algorithm uses the current values of 

iL  and the estimated execution time of the next transaction et , in order to 
schedule the next transaction to the worker with the least load. In that way, the 
ETLB algorithm tries to minimize the makespan and maximize the throughput. 
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The implementation of the ETLB algorithm uses the variables n , i , et , and 

iL , where 1, ,i n  . The algorithm finds the index i  of iL  with the minimal 

value, adds et  to iL , and returns the value i . The scheduler S  then uses the 

returned value of i  and schedules the next transaction. 

Theorem 2. ETLB algorithm is an online greedy algorithm that schedules 
the next input transaction to the least loaded worker within time  n , where 

n  is the number of workers. 

Proof. ETLB algorithm correctness trivially follows from the correctness of 
the two Python primitives: (i) the primitive min for finding the minimal element 
in the list iL , 1, ,i n  , and (ii) the primitive index for finding the index i  of 
that element. Since the tight bound on execution time for the composition of 
primitives index and min is  n , and the tight bound on transaction execution 

time estimation is  1 , the overall tight bound for ETLB algorithm is  n . 

2.4 AC algorithm 

AC algorithm can be viewed as an extended ETLB algorithm. AC 
algorithm, like ETLB algorithm uses the method for determining the transaction 
execution times. Unlike ETLB algorithm, AC algorithm checks for a possible 
conflict between the next transaction to be scheduled and the already scheduled 
transactions. Note that here we present and analyze the simplified version of AC 
algorithm, which does not use the notion of worker load unbalance. 

Let F  be a scheduled transaction,  , ,b eF t t V , where bt  is the F’s start 

time, et  is the F’s end time, and  ,V R W . Let  1 1 1 1, ,b eF t t V  be the already 

scheduled transaction and  2 1 2 2, ,b eF t t V  be the next transaction from inQ . 

In this paper we assume that every transaction iF  uses all of its t-variables 

during its entire life cycle  ,bi eit t . So, there is no need to maintain the access 

times for individual t-variables. 

Generally, when iF  and jF  execute on the optimistic STM, with the lazy 

conflict detection, like the PSTM, we say that iF  attacks jF , if their execution 

overlaps in time and if iF  finishes before jF , because iF  will get committed, 

while jF  will get aborted. Theoretically, iF  and jF  can attack each  another, if 

they finish at the same time, but in reality the PSTM serializes the requests for 
commit, so one of these transactions will get committed and the other  will get 
aborted.  
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The transactions 1F  and 2F  are in conflict if: (i) 1F  attacks 2F  or vice 
versa, and (ii) if the Bernstein conditions [12] are not satisfied (i.e. there is a 
data race between 1F  and 2F ). Precisely, 1F  attacks 2F  if: 

 2 1 2b e et t t  . 

2F  attacks 1F  if: 

 1 2 1b e et t t  . 

The Bernstein conditions for 1F  and 2F  are: 

 1 2 {}R W  , 

 2 1 {}R W  , 

 1 2 {}W W  . 

AC algorithm uses the following scheduling strategy. Like ETLB 
algorithm, it schedules the next transaction to the least loaded worker, if the 
resulting schedule is conflict-free. But, if scheduling the next transaction T  to 
the least loaded worker would lead to a conflict with the already scheduled 
transactions, AC algorithm immediately backs-off and conservatively schedules 
T  to the most loaded worker (because this slot in the schedule is definitely 
conflict-free). The advantage of this strategy is that it is relatively fast. The 
disadvantage is that by taking the conservative back-off, AC algorithm may 
miss a chance to make a better schedule (with shorter makespan), as we show in 
Section 3. 

The implementation of AC algorithms uses the variables that are already 
introduced. Here, we introduce the duration of the transaction, dt , as well as 

queues of scheduled transactions per worker, iQF . The algorithm executes the 
next steps in order to calculate the required index i : 

1. Find the indexes mini and maxi , which correspond to minL and maxL , 
respectively. 

2. Set 2T  to the next transaction from inQ . 

3. Determine the estimated execution time for the transaction of type 2f  

and assigns it to the value 2dt . 

4. Set mini i ,  2 2 2, ,min min dF L L t V   

5. Inside the loop, for every already scheduled 1F , check if there is a 

conflict between 1F and 2F , and break the loop on the first detected 
conflict. 
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6. If a conflict is detected in step 5, set maxi i ,  2 2 2, ,max min dF L L t V   

7. Enqueue 2F  at the end of iQF . 

8. Return i . 

The scheduler uses the return value of i  to schedule the current transaction. 

Theorem 3. AC algorithm is an online greedy algorithm with conservative 
conflict avoidance that schedules the next input transaction T  to the least 
loaded worker, if this does not cause a conflict; otherwise, it schedules T  to the 

most loaded worker. Its time complexity is  2O nm , where n  is the number of 

workers and m  is the number of t-variables, if all the transactions read m  t-
variables and write (possibly different) m  t-variables. 

Proof. AC algorithm correctness trivially follows from the correctness of 
Python primitives: min, max, and index, as well as the primitives for checking 
attacks and Bernstein conditions among pairs of transactions. Time complexity 
of all the steps of AC algorithm, except step 5, is  n . In the worst case, the 

loop in step 5 has  –  1n  passes. We assume iQF  lists are short (thus may be 

checked in constant time). Time complexity for checking attacks is  1 , and 

for checking Bernstein’s conditions is  2m , because finding an intersection 

between two sets with m  elements takes  2m  steps (since we represent sets 

as Python lists, see [13]). So, the upper bound on the execution time for step 5 

is  2O nm . Since  2O nm dominates on  n , the upper bound for the 

complete algorithm is  2O nm . 

Remark 1. In our future work we may use hash sets instead of lists, in order to 
reduce set intersection bound to  m , and the overall bound to  O nm . 

 2.5  AAC algorithm 

In this section, we describe AAC algorithm, which is a natural extension of 
AC algorithm. The main disadvantage of the conservative scheduling strategy 
used by AC algorithm is that if there are more than two workers, a worker that 
has the load between the minimal and maximal will not be employed, even 
though the new transaction can be scheduled to it, without conflicts with the 
already scheduled transactions. 

The goal of AAC algorithm is to overcome this disadvantage of AC 
algorithm. If the scheduling of the next transaction T  to the least loaded worker 
would lead to a conflict, AAC algorithm, in contrast to AC algorithm, does not 
give up immediately, and does not schedule T  to the most loaded worker. 
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Instead it checks the workers, one by one, from the least loaded worker to the 
most loaded worker. When it finds the worker to which it can schedule the 
transaction without causing conflicts, AAC algorithm schedules the transaction 
to it. 

The advantage of this scheduling strategy used by AAC algorithm, with 
respect to AC algorithm, is that in the general case it finds the schedule with a 
shorter makespan [14], and higher throughput. Actually, AAC algorithm finds 
the schedule with the shortest makespan possible (this may be trivially shown 
by contradiction). 

So, to implement AAC algorithm, we introduced a dictionary that projects a 
worker index i  to its load iL ,   iM i L . 

AAC algorithm executes the following steps: 

1. Find the indexes mini  and maxi  which correspond to the minL  and maxL , 
respectively. 

2. Set 2T  to the next transaction from inQ . 

3. Determine the estimated execution time for the transaction of type 2f  

and assign its value to the variable 2dt . 

4. Create M . 

5. Set mini i ,  2 2 2, ,min min dF L L t V  , conflictFound = False 

6. Iterate through M  in the sorted order of worker loads, using the 
iteration index i . If the index i  reaches maxi , set the indicator 
conflictFound to True and exit the loop. If not, for every already 
scheduled 1F , check whether there is a conflict between 1F  and 2F . If 

there is no conflict, set  2 2 2, ,i i dF L L t V   and exit the loops; 

otherwise, continue with the execution of the loop. 

7. If the conflictFoound is True, set maxi i ,  2 2 2, ,max max dF L L t V  . 

8. Enqueue 2F  at the end of iQF . 

9. Return i . 

Theorem 4. AAC algorithm is an online greedy algorithm with exhaustive 
conflict avoidance that schedules the next input transaction T  to the first 
worker, in order from the least to the most loaded worker, where T  does not 

cause a conflict. Its time complexity is  2 2O n m , where n  is the number of 

workers and m  is the number of t-variables, if all the transactions read m  t-
variables and write (possibly different) m  t-variables. 
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Proof. AAC algorithm correctness trivially follows from the correctness of 
Python primitives: min, max, and index, as well as the primitives for checking 
attacks and Bernstein conditions among pairs of transactions. Time complexity 
of all the steps of AAC algorithm, except step 6, is  n . In the worst case, the 

two nested loops in step 6 have  2
–  1n  passes. We assume iQF  lists are short 

(thus may be checked in constant time). Time complexity for Python sort is 

 ( )O n log n , for checking attacks is  1 , and for checking Bernstein’s 

conditions is  2m  [13]. Since sorting is done before the two nested loops and 

 2 2O n m  dominates on  ( )O n log n , the upper bound on execution time for 

the complete algorithm is  2 2O n m . 

Remark 2. In our future work we may reduce the bound to  2O n m . 

3 Theoretical Analysis of Transaction Schedules 

In this section, we present the analysis of the expected results for all the 
four algorithms for scheduling transactions, for the three types of the input 
workloads, that is the transaction packets (RDW, CFW and WDW), in the form 
of expected transaction schedules, for the given number of workers (three and 
four workers). In the following three sections we analyze the expected results 
for the three given input workloads. 

3.1 Analysis for RDW workload 

Figure 1 shows the expected transaction schedules for the four transaction 
scheduling algorithms (RR, ETLB, AC and AAC), for the input RDW workload 
and three workers. The top of Fig. 1 shows the input queue of transactions, 
which comprises the sequence of RAA (Read All Accounts) transactions, 
named R  transactions, and the sequence of MT (Money Transfer) transactions, 
named M  transactions, where the R  transactions are even and the M  
transactions are odd. The first R  transaction is at the head of the queue. The 
expected schedules for individual algorithms are shown below the input queue. 

In this case, RR algorithm works by the module of three, so, it assigns the 
zeroth R  transaction to the worker 0W , then it assigns the first M  transaction 

to the worker 1W , the second R  transaction to the worker 2W , and then it starts 
this cycle over again. 

ETLB algorithm assigns the zeroth R  transaction to the worker 0W , the 

first M  transaction to the worker 1W , the second transaction R  to the worker 

2W , then 1W  becomes the least loaded, so the algorithm assigns the third M  



M. Popović, B. Kordić, M. Popović, I. Bašičević 

94 

transaction and the fourth R  transaction to the worker 1W . Then, the workers 

0W  and 2W  become the least loaded. Because the worker 0W  has the smaller 
index, the algorithm assigns the fifth M  transaction to it, etc. 
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Fig. 1 – Transaction schedules for RDW workload and three workers. 
 

AC algorithm assigns the zeroth R  transaction to the worker 0W . After 

that, the least loaded worker with the smallest index is worker 1W . Since the 
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scheduling of the first M  transaction to 1W  would lead to a conflict with the 

already scheduled R  transaction on 0W , the algorithm assigns the first M  

transaction to the worker with the highest workload – 0W . Further on, the 
second R  transaction goes to the least loaded worker (with the smallest index) 

1W , because the second R  transaction is not in a conflict with the already 

scheduled zeroth R  transaction (which executes in parallel on 0W ), etc. 

AAC algorithm assigns the zeroth R  transaction to the worker 0W . The 

algorithm can assign the first M  transaction neither to the worker 1W , nor to 

the worker 2W , because it would make a conflict (with the zeroth R  transaction 

on the worker 0W ), so it assigns it to the worker 0W . Then it assigns the second 

R  transaction to the worker 1W  (because it is not in a conflict with the already 

scheduled zeroth R  transaction), the third M  transaction to the worker 1W  
(because it is not in a conflict with the already scheduled first M  transaction). 
In this step, AAC came to a better schedule than AC algorithm, which, when it 
discovers that scheduling the third M  transaction to the least loaded worker 2W  
would lead to a conflict, immediately gives up searching for a suitable worker, 
and (wrongly) assigns this transaction to the worker 0W . Alternatively, after 

checking 2W , AAC algorithm checks the next least loaded worker 1W , and finds 
that there is no conflict. 

Summary of the results in Fig. 1: AAC algorithm made the optimal 
(conflict-free) schedule with the shortest makespan, AC algorithm made a 
suboptimal (conflict-free) schedule with greater makespan, while RR and ETLB 
algorithms made the worst schedules containing conflicts. Interestingly, the 
schedule made by RR algorithm has the same initial makespan as the schedule 
made by AAC algorithm, but since the latter is conflict-free it is also the final 
schedule, whereas the former contains conflicts, so some transactions will be 
aborted and, consequently, the final schedule will be greater. 

Fig. 2 shows the transaction schedules for RR and ETLB algorithms for the 
input RDW workload and four workers. The analysis is similar to the case 
shown in Fig. 1, and is therefore skipped. 

Fig. 3 shows the transaction schedules for AC and AAC algorithms, for the 
input RDW workload and  four workers. 

AC algorithm functions similarly as in the preceding cases with the three 
workers: it assigns the zeroth R  transaction to the worker 0W , but the first 

transaction cannot be assigned to the workers 1W , 2W  and 3W , because it would 

lead to a conflict, so the algorithm assigns it to the worker 0W . On the contrary, 
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the second R  transaction has no conflict with the already assigned zeroth 
transaction, so the algorithm assigns it to the worker 1W . Further on, because 

scheduling of the third M  transaction on the least loaded worker 2W  would 
lead to a conflict with the already scheduled zeroth R  transaction (on worker 

0W ), AC algorithm immediately assigns the third M  transaction to the most 

loaded worker 0W , and by doing so, it misses the chance to make a better 
schedule, because the third M  transaction does not have a conflict with the first 
M  transaction (on the worker 0W ). AAC algorithm uses this opportunity. 
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Fig. 2 – Transaction schedules for RR and ETLB algorithms,  
for RDW workload and four workers. 

 

AC algorithm makes a similar miss when scheduling the fifth M  
transaction, because scheduling this transaction to the least loaded worker 3W  

would lead to a conflict with the R  transactions already scheduled to 0W , 1W , 

and 2W . Thus the algorithm assigns this transaction to the most loaded worker 

0W , although it could have assigned this transaction to the worker 1W  or to the 

worker 2W . 
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AAC algorithm makes the transaction schedule that allows the fastest 
execution completely without conflicts, which in this particular case has the 
period of eight transactions, where pairs of transactions are assigned to workers. 

Summary for the results in Fig. 2 and Fig. 3: The results are essentially the 
same as in Fig. 1 – AAC algorithm made the optimal (conflict-free) schedule 
with the shortest makespan, AC algorithm made a suboptimal (conflict-free) 
schedule with greater makespan, and RR and ETLB algorithms made the worst 
schedules containing conflicts. 
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Fig. 3 – Transaction schedules for AC and AAC algorithms, 
 for RDW workload and four workers. 

 

3.2 Analysis for CFW workload 

Figure 4 shows the expected transaction schedules for all of the algorithms, 
for the input CFW workload, and for the two cases: (1) with three and (2) with 
four workers. The top of Fig. 4 shows the input queue of transactions, which 
comprises the sequence of M  conflict-free transactions. The expected 
schedules for individual algorithms are shown below the input queue. 
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Considering that there is no conflict between transactions, there is no 
concurrency between the workers, and therefore the transactions may be 
executed in parallel – three transactions on the three workers, and four 
transactions on four workers. 

Summary of the results in Fig. 4: All the algorithms made the same 
transaction schedules. 
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Fig. 4 – Transaction schedules for all the algorithms,  
for CFW workload and three or four workers. 

 

3.3 Analysis for WDW workload 

Figure 5 shows the transaction schedules for all of the algorithms, for the 
input workload WDW and three workers. The top of Fig. 5 shows the input 
queue of transactions, which comprises the sequence of WAA (Write All 
Accounts) transactions, named W  transactions, and the sequence of MT 
(Money Transfer) transactions, named M  transactions, where the W  
transactions are even and the M  transactions are odd. The first W  transaction 
is at the head of the queue. The expected schedules for individual algorithms are 
shown below the input queue. 

Since RR and ETLB algorithms make no difference between the types of 
transactions (they treat W  and R  transactions as equal), they make the same 
transaction schedule for WDW and RDW inputs. The output schedules in Fig. 5 
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are the same as the schedules in Fig. 1, except that the R  transactions in Fig. 1 
are replaced with the W  transactions in Fig. 5. 

On the other hand, AC and AAC algorithms serialize all of the transactions 
to the worker 0W , whereas, the worker 1W  and 2W  stay idle. The reason is that, 

after the algorithm assigns the zeroth transaction W  to the worker 0W , no other 

transaction can be assigned neither to the worker 1W , nor to the worker 2W , 

because this would lead to a conflict with the already scheduled zeroth W  
transaction. 
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Fig. 5 – Transaction schedules for all the algorithms, 
 for WDW workload and three workers. 

 

Summary of the results in Fig. 5: Since all the transactions are in conflict 
with each other, both AC and AAC algorithms made the optimal transaction 
schedules by serializing them (so each transaction is executed just once). 
Although the transaction schedules made by RR and ETLB algorithms look 
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better at first sight (because it looks like they have shorter makespans), actually 
they are worse than the schedules made by AC and AAC algorithms, since they 
contain conflicts. Thus some of the transactions will be executed more than 
once, and the final makespans will be greater (than the makespans for AC and 
AAC algorithms). 

The results for the input workload WDW and four workers are essentially 
the same as the results on Fig. 5 – both AC and AAC algorithms made optimal 
transaction (conflict-free) schedules, whereas RR and ETLB algorithms made 
worse schedules (containing conflicts), and are thus not shown here. 

4 Brief Overview of Experimental Evaluation 

Here we provide a brief overview of the experimental evaluation from [9]. 
Since PSTM is a new STM for Python, we could not directly use standard 
benchmarks, such as STAMP and STMBench7, because they are written for 
different languages (C++ and Java) and for STMs with different APIs. 
Therefore we used the PSTM-based application Bank and the three workloads, 
which we introduced in Section 3 (RDW, CFW, and WDW). In the 
experiments, RDW is a mix of 100 R and 100 M transactions, CFW is a packet 
of 100 M transactions, and WDW is a mix of 100 W and 100 M transactions. 
The parameter K (see Section 2.1) is set to 200. 

In the theoretical analysis in Section 3 and the experimental evaluation 
presented in this section, we were interested in the worst case scenario that 
happens when transactions arrive to inQ  immediately one after the other, which 
may be seen as a constant distribution with 0 inter-arrival times. In the 
experiments, this is achieved by storing the complete workload in inQ  at the 
beginning of the workload execution. 

We conducted the experiments of Intel Core i7-3770@3.40GHz machine 
with 16 GB of operating memory, running OS Linux. Since OS uses at least one 
core, we could use up to three cores for the worker processes. In [9] we made 
the experiments with two workers (not shown here) and with three workers. 

We used the relative speedup (S) to compare the performances of two 
scheduling algorithms, 1A  and 2A . Let both 1A  and 2A  process the same 

workload L, and let 1et  and 2et  be the corresponding mean execution times of L 

using 1A  and 2A , respectively. The relative speedup of an algorithm 1A  over an 

algorithm 2A , for a given workload L, is defined as the ratio 1 2/e eS t t . 

Since RR algorithm is the simplest of all the four scheduling algorithms 
proposed in this paper, we used it as the baseline for performance analysis. So, 
we calculated the relative speedups of ETLB, AC, and AAC algorithms over 
RR algorithm. 
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The experiments with three workers are organized as follows. We made 3 
groups of experiments for 3 different workloads. Further on, within each group 
of experiments we made 4 sub-groups of experiments for 4 scheduling 
algorithms. Finally, we executed the given workload 12 times in each sub-group 
of experiments. So, we made 3 × 4 × 12 = 144 experiments all together. 

Although we made every possible precaution (disconnecting the target 
machine from the net, closing unnecessary processes, etc.), we could not 
eliminate the interference from OS on the schedules made by the application 
level scheduler. Because of this imperfectness of measurements, even after 
eliminating the obvious outliers, some of the experimental results exhibit minor 
deviations from the expected theoretical results from Section 3. Therefore, we 
did not provide detail statistics, and these results should be regarded as initial 
preliminary results. In our future work we plan to conduct more detailed 
experiments on some many-core machine, where we expect that it would be 
possible to isolate the worker processes from OS and its processes, because they 
will execute on different cores. 

Table 1 shows the experimental results. The rows of Table 1 correspond to 
the type of workload. The elements of the column “T; S” contains the average 
execution time in seconds (1st line) and the corresponding relative speedup (2nd 
line). The column “A” contains the average of the total number of aborts. The 
additional data form [9] is that the average execution time for R and W 
transactions is 45 ms and for M transactions is 0.65 ms. 

Overall discussion of the experimental results in Table 1 is given in the 
next section (Section 5) within the comparison of all the algorithms’ features. 

Table 1 
Results of Experimental Evaluation for 3 workers from [9]. 

RR algorithm ETLB algorithm AC algorithm AAC algorithm Alg. 

Load T; S A T; S A T; S A T; S A 

RDW 
2.49 

- 
1.33 

2.96 

0.84 
70 

2.23 

1.11 
9.33 

1.91 

1.30 
9.33 

CFW 
0.126 

- 
0 

0.127 

0.99 
0 

0.127 

0.99 
0 

0.127 

0.99 
0 

WDW 
6.67 

- 
88.67 

6.44 

1.03 
97.33 

4.57 

1.45 
1 

4.42 

1.50 
0.67 

5 Comparison of the Presented Algorithms’ Features 

Here we define four features for each online scheduling algorithm: (i) time 
complexity, (ii) resulting schedule quality, (iii) speed-up over RR algorithm, 
and (iv) number of aborts. The last two features are defined based on the 
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complete workload execution, which terminates when all the transactions within 
a given workload are successfully committed. The speed-up over RR algorithm 
is defined as the complete workload makespan for a given algorithm divided by 
the complete workload makespan for RR algorithm, whereas the number of 
aborts is the number of aborts for complete workload execution. 

We analyzed the first two features (complexity and schedules) in this paper. 
Recently, we experimentally validated all four algorithms and measured the 
values for the last two features (speed-up and number of aborts), for RDW, 
CFW, and WDW workloads, on three workers, in our previous work [9]. 

Table 2 shows all the features (in rows) for all the algorithms (in columns). 
We now compare all the presented algorithms for each algorithm’s feature. 
These features are related to the three requirements stated in the abstract of the 
paper, namely speed of the algorithm is characterized by its time complexity, 
the total makespan is indirectly characterized by its average speedup over the 
baseline RR algorithm, and the conflict freeness is characterized by the quality 
of theoretical initial schedules. 

Table 2 
Comparison of Online Scheduling Algorithm’s Features. 

Feature  \  Algorithm RR ETLB AC AAC 

Time complexity (1)  ( )n  2( )O nm  2 2( )O n m  

RDW Confs Confs SuOpt Opt 

CFW Opt Opt Opt Opt 

Quality of 

theoretical 

initial schedules WDW Confs Confs Opt Opt 

S - 0.84 1.11 1.3 RDW 

A 70 70 9.33 9.33 

S - 0.99 0.99 0.99 CFW 

A 0 0 0 0 

S - 1.03 1.45 1.50 

Average 

Speed-up and 

Aborts 

(Measured in 

arch. with 

3 workers) 
WDW 

A 97.33 97.33 1 0.67 

Legend: Confs – with conflicts; SuOpt – suboptimal; Opt - optimal 
 

As we go from RR, over ETLB and AC, to AAC algorithm, their time 

complexity increases from  1 , over  n  and  2O nm , to  2 2O n m , 

respectively. This is as expected, because as they become more involved, their 
time complexity increases. However, if the number of workers n  and the 
number of used t-variables m  are smaller, the corresponding scheduling 
overhead, even for AAC, may be tolerable. In the experimental validation [9] 
this was exactly the case, since 3n   and 2m   (because we used clever 
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encoding for R  and W  sets – for all t-variables, we use a special value ‘*’, thus 
for example the set R  for RAA transaction has a single element ‘*’). 

However, this increase in time complexity pays well in the quality of 
resulting theoretical initial schedules. Except for the workload CFW, where all 
the algorithms produce the optimal schedules (Opt), RR and ETLB produce the 
worst initial schedules (for both RDW and WDW), which contain transaction 
conflicts (Confs). AC algorithm produces the optimal schedule for the workload 
WDW, and a suboptimal (SuOpt) initial schedule for the workload RDW. The 
term suboptimal here means that the initial schedule is conflict-free but its 
makespan is longer than the optimal makespan. Finally, only AAC algorithm  
produces the optimal initial schedules for all the workloads, so the quality of its 
results is the best. 

The average speed-up S  and the number of aborts A (which were 
experimentally measured in the architecture with three workers [9]) are in 
accordance with the theoretical transaction schedules. For the workload CFW, 
S  is 0.99 on average for all other algorithms, and A  is 0, for all the algorithms. 
ETLB and RR algorithms are the worst: (i) they have the same A  on both RDW 
and WDW workloads, and (ii) S  for ETLB is worse than for RR algorithm 
(0.84 for RDW and 1.03 for WDW). 

AC and AAC algorithms have a comparable S  for WDW, 1.45 and 1.50, 
respectively. Finally, AAC algorithm has grater S  than AC algorithm for RDW 
(1.3 > 1.11), so AAC produced the best schedule. Note that although both AC 
and AAC algorithms produced conflict-free schedules for both RDW and WDW 
workloads, some aborts occurred during the complete workload execution ( A  is 
not equal to 0), because we conducted the experiments on the quad-core PC, 
and only one core was not enough for all the system processes, so local OS 
Linux compromised the initial conflict-free schedules made by AC and AAC 
algorithms (we mentioned this possibility in Section 2.1). 

6 Conclusion 

In this paper we presented four online transaction scheduling algorithms, 
namely, RR, ETLB, AC, and AAC algorithm, proved their correctness and time 
bounds, and conducted a theoretical analysis of the transaction schedules they 
produce, using three different workloads (RDW, CFW, and WDW). Finally, we 
compared various features of the four algorithms. The theoretical results are as 
expected: as we go from RR, over ETLB and AC, to AAC algorithms, the 
quality of resulting schedules increases at the cost of increase of algorithm’s 
time complexity. The experimental results for the average speedup and the 
number of aborts, in the complete workload execution, which were measured in 
the architecture with three workers, are in accordance with the theoretical 
results. For our future work we plan a more detailed experimental evaluation on 
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a many-core machine, research on tuning the parameter K, and further research 
on scheduling algorithms. 
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