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High — Performance Adaptive Intelligent
Direct Torque Control Schemes for
Induction Motor Drives
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Abstract: This paper presents a detailed comparison betwedievadaptive
intelligent torque control strategies of inductiomtor, emphasizing advantages
and disadvantages. The scope of this paper isdosehan adaptive intelligent
controller for induction motor drive proposed fdglh performance applications.
Induction motors are characterized by complex, lyigion-linear, time varying
dynamics, inaccessibility of some states and ouipumeasurements and hence
can be considered as a challenging engineeringegmoblhe advent of torque
and flux control techniques have partially solveduction motor control pro-
blems, because they are sensitive to drive paramat&tions and performance
may deteriorate if conventional controllers aredudatelligent controllers are
considered as potential candidates for such anicapiph. In this paper, the
performance of the various sensorless intelligeined Torque Control (DTC)
techniques of Induction motor such as neural ndiwduzzy and genetic
algorithm based torque controllers are evaluatethpfive intelligent techniques
are applied to achieve high performance decoupledand torque control. This
paper contributes:

i) Development of Neural network algorithm for statéestion in DTC;
i) Development of new algorithm for state selectiomgi<Genetic algorithm
principle; and

iii) Development of Fuzzy based DTC. Simulations hawenlgerformed using
the trained state selector neural network instgfadooventional DTC and
Fuzzy controller instead of conventional DTC colémo

The results show agreement with those of the cdiowead DTC.
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1 Introduction

Direct Torque Control (DTC) of pulse - width - modulated inveftd
induction motor drive is receiving wide attention in the regears [1, 2]. Fig. 1
shows the basic configuration for the direct torque controlled immatuchotor
drive. The scheme uses stator flux vector and torque estimatcasPWM —
inverter-fed drive. The stator flux amplituge and torque I are the command
signal and which are compared with the estimateahd T, values, respectively,
giving instantaneous flux error,nd torque error{as shown in Fig. 1.
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Fig. 1- Basic configuration of DTC scheme.

In the conventional scheme, the flux errqr&hd torque error -z signals
are delivered to two hysteresis comparators. The correspondiitglizigl
output variables and the stator flux position sector create aldigitrd, which
selects the appropriate voltage vector from the switchéfipt Selection of
voltage vector is also depending upon the sector in which the d$hator
positioned [3]. Thus, the selection table generates puls&s, & to control the
power switches in the inverter. Fig.2 shows the pulgeS,SS. generated when
the position of stator flux is in sector 1 [4].

The expression for the developed torque of an induction motor is lgven
(1)
_ NpM ¥, sind
~ olgl, !

(1)

2

where: 0 = and Wgis stator flux.

s=r
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Fig. 2—Generation of Pulses for PWM inverter when fluxtereles on sector 1.

Under normal operating conditions, the amplitude of the working iux
kept constant at the maximum value. Hence the developed torgumational
to the sine of the torque angl& between stator and rotor fluxes, and can be
controlled by suitably changing the angé. ‘Since the time constant of rotor
current is large compared to stator, the stator flux islexated or decelerated
with respect to the rotor flux to change the torque angle. Sthteri§ a
computational quantity, which is obtained using the stator-measuresht’|¢
and voltage V5.

t

llesz(Vs_IsRs)dt- (2)
0

In general, conventional DTC scheme has the following disadvantages [5]:
i) Variable switching frequency
i) Violence of polarity consistency rules
iiiy Current and torque distortions caused by the sector changes
iv) Starting and low - speed operation problems

v) High sampling frequency needed for digital implementation ofehyst
resis comparators.

Introducing adaptive controllers instead of conventional hystecesisol-
lers can eliminate all the above difficulties. In this papéable intelligent
controllers in DTC scheme are discussed to improve therpwafce in low
speed operations and to minimize the torque ripple. Intelligentat®nising
expert systems, fuzzy logic, neural networks and genetic dgmrihave been
recently recognized as important tools to enhance the perforrofitioe power
electronic systems [6, 8]. The combination of intelligent contith adaptive
and robust control appears today the most promising research accomplishment in
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the drive control area and in the meantime, as the best apgarate optimal
exploitation of intelligent control prerogatives and practicadlization of
adaptive and robust ac motor drives. In this paper, detailedtiomtiens on
viable intelligent torque control schemes are carried owsitmylation and the
results are compared.

2 Neural Network Controllers for DTC Scheme
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Fig. 3—Schematic of DTC using Neural-Network controller.

A neural network is a machine like human brain with propertidsashing
capability and generalization. They require a lot of trainmginderstand the
model of the plant. The basic property of this network is thatnables
approximation of complicated nonlinear functions [8, 11]. In direct torque
control scheme, neural network is used as a sector seleb®rdifiect torque
neuro controller is shown in Fig. 3. In this control strategy, torape flux
errors are multiplied by the constant valee dnd which are given as inputs
along with the flux position information to the neural networktcmler. Output
of the controller is compared with the previous switchingestaif inverter.
Artificial Neural Network (ANN) offers inherent advantagesver other
conventional DTC schemes for induction motors, namely:

i) Reduction of the complexity of the controller;

i) Reduction of the effects of motor parameter variations, pantigufa
the stator-flux estimation;
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iiiy Improvement of controller time response, i.e., the ANN controller
uses only parallel processing of sums, products by constant gaihs,
a set of well known non-linear functions so that no time- consuming
sequential integrations routines are required;

iv) Improvement of drive robustness — ANN’s are fault toleradt @an
extract useful information from noisy signals.

3 Principles of Artificial Neural Networks

Feed forward artificial neural networks are universal appratons of
nonlinear functions [8, 10]. As such, the ANN’s use a densecorteection of
neurons that correspond to computing nodes. Each node performs thdi-multip
cation of its input signals by constant weights, sums up tlhétseand maps the
sum to a nonlinear function; the result is then transferred touiigut. The
structure of neuron is shown in Fig. 4 and the mathematical médeheuron is

given by
N
yzq{Zcqxi —b], (3)
i=1

where, X :(xl,xz,...,xN) are inputs from the previous layer neurons,
W = (u)l,wz,...,wN) are the corresponding weights aflis the bias of the
neuron.
For a logarithmic sigmoidal activation function, the output is given by
1

N : (4)
1+ exp( > WX — bj
i=1

y:

A feed forward neural network is organized in layers: an itgydr, one or
more hidden layers, and an output layer. No computation is performibe in
input layer and the signals are directly supplied to the figstem layer through
input layer. Hidden and output neurons generally have a sigmaitiehtion
function. The knowledge in an ANN is acquired through a learningritig,
which performs the adaptation of weights of the network itexigtiuntil the
error between the target vectors and output of network falbsvieelcertain error
goal. The most popular learning algorithm for multi-layer netaaskthe back
propagation algorithm, which consists of a forward and backaetidn. In the
first, the signals are propagated through the network layéayley. An output
vector is thus generated and subtracted from the desired outpat. vElee
resultant error vector is propagated backward in th@arktand serves to adjust
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the weights in order to minimize the output error. The back prdipagaaining
algorithm and its variants are implemented by many general — gusptisvare
packages such as the neural-network toolbox from MATLAB [13, 14] and th
neural-network development systems described in [12]. The time edqtar
train an ANN depends on the size of the training data set anshgralgorithm.

An improved version of back propagation algorithm with adaptivenieg rate

is proposed and which permits a reduction of the number raftides. Fig. 5
shows the proposed neural network for DTC scheme in which, iopipiit and
hidden layers are shown. The error signals and stator fluxe amgl given to
input layer. Switching state information is taken from the output layer.

threshold °

Neuron j

layer n-1 o

layer n
Fig. 4 —Structure of Neuron.

Input Layer Hidden layer Output Layer

Fig. 5—Structure of Neural network proposed for DTC scheme
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4 DTC Using Genetic Algorithm

Genetic algorithms are stochastic global search algorithmsy fitmic
processes observed in natural evolution and use a vocabulary borromeithdr
natural genetic [15]. A GA considers individuals in a populationeqaften
called strings or chromosomes and must have the following components:

i) A genetic representation for potential solution encoded as stang
chromosomes;

i) A way to create an initial population of potential solutions;
iii) An evaluation function for rating solutions in terms of their fitness;
iv) Genetic operator that alter the composition of children;

v) Values for various parameters that the genetic algorithns use
(population size, probabilities of applying genetic operators, etc.).

Given these five components, a genetic algorithm is constructed as follows:
i) Initialize a population of chromosomes;
ii) Evaluate each chromosome in the population;

iiiy Select chromosomes in the population as parent chromosomes to
reproduce;

iv) Apply the genetic operators to the parent chromosomes to produce
children;

v) Evaluate the new chromosomes and insert them into the population;

vi) If the termination condition is satisfied, stop and return the best
chromosome. If not go to step (iii).

For executing genetic algorithm to train the neural networks,ilelbta
procedures were followed. Fig. 8 shows the flowchart to execujenatic
algorithm. It gives an algorithm to select best chromosome filwen total
population of chromosomes. To select best chromosome, parent selection is
prominent. Steps for parent selection are summarized as follows:

i) Selection of parents for reproduction is stochastic;
i) Selection of parents with higher fithess value;
i) Roulette wheel technique for parent selection. A roulette wheel
shown in Fig. 7 has slots, which are sized according to thesditoie
each chromosome;

iv) Selection process is to spin the roulette wheel.

In Fig. 6, fq, fy, f3, f4, f5 are fitness of chromosomes 1, 2, 3, 4 and 5,

respectively. Pop represents the total population size; thifittadal number of
chromosomes is 50, population size is also 50. Therefore,
99



M. Vasudevan, R. Arumugam, S.Paramasivam

foop = fs0 = Fitness of 56 chromosome. (5)

Total fitness is given by = Sum of the fithess of the population,

F= Zevalj . (6)

Probability function for each chromosome is
pi =eval /F, i=1 23..., pop. (7)
Accumulative probability function for each chromosome is

|
G =) P, i=123...,pop. )

|
<

Fig. 6 —Roulette Wheel.

5 Neural Networks Trained by Genetic Algorithms

In neural networks, genetic algorithms are used to determaevéights
and threshold values. Fig. 7 shows the structure of neural rkstivamed using
GA [15]. The respective error vectors between the stédetee of conventional
DTC and the neural networks outputs afee,,e;. To achieve minimum value
of performance index, the groups of threshold values and weights dhdee t
determined.

Performance inde>E(W) can be given by:
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N

EW)=2> e (i), ©

=1

where: " =[e; e, e5]"is error vector;

A is symmetric positive definite matrix; and
N is sample size.

threshold threshold

layer 2

Fig. 7—Structure of neural networks trained using GA.
Implementation of the genetic algorithm described in this phperthree
stages:
i) Fitness evaluation
if) Selector
iif) Breeding
The genetic operators used in this work are quite differemnt the classical
ones used in [15].

The main differences between the proposed work and existing work are
described as follows:

i) The real valued space are dealt in this paper, where a solstion i
coded as a vector with floating point type components

i) Some genetic operators are non-uniform, that is, their actijgends
on the age f the population.

The contents of the algorithm are listed below:
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5.1 Chromosome Encoding

Let the total number of thresholds and weights of the neunabrieshown
in Fig. 7, be packed in the n-dimensional vedtbr

W= [thzmd . md, . thimd omt ] = [ww, .. s

Here, the weights vectd as a chromosome (individual). In other words,
each chromosome vector is coded as a vector of floating point raimbthe
same length as the solution vector. Each element isllnisalected as to be
within the desired domain.

5.2 Evaluation Function
The evaluation function for chromosomes s
100
1+EW)’
where, the chromosome vecMfis a real weights vector, aif{W) is defined

by equation (9). The evaluation function is used to rating a asomes in
terms of their “fitness”. The higher fitness of chromosome wiliquer better.

evalw) = (9a)

5.3 Genetic Operators

In this paper, both binary and floating point encoding are usepbrastic
operators to train the neural networks in DTC technique.

The binary operators are one point crossover, two points crossoddsit
mutation. The operators used for floating point encoding are different f
classical ones. They work in a real valued space. Howevauseof intuitive
similarities, they are divided into the standard classesutition and crossover.
Mutation groups used in this paper are Uniform mutation (UM), Noifierm
Mutation (NUM) and Non- Uniform Arithmetical Mutation (NUAM). Gssover
groups are Two-Points Crossover (TPC) and Two-Points Arithrh&ircasover
(TPAC).
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Fig. 8 —Flowchart for execution of a Genetic Algorithm.
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6 Fuzzy Logic Direct Torque Control of Induction Motor

In DTC induction motor drive, there are torque and flux ripples becaus
none of the inverter states is able to generate the exaay@olalue required to
make zero both the torque electromagnetic error and the 8tedanrror [6, 7].

The suggested technique is based on applying switching stake itoverter and

the selected active state just enough time to achieve theetangd flux
references values. A null state is selected for the réengaiswitching period,
which won't almost change both the torque and the flux. Therefore, the
switching state has to be determined based on the values of srqueflux

error and stator flux angle. Exact value of stator flux arjlelétermines where
stator flux lies [8].
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Fig. 9—Schematic of fuzzy logic DTC.

The schematic of fuzzy logic direct torque control scheareirfduction
motor drive is shown in Fig. 9. The fuzzy output of torque, flux ermars stator
flux angle are given as input variables to fuzzy controllet autput variable
obtained from the fuzzy controller is switching state of thesiter. Switching
state of the inverter is a crisp value. The input varsaabiembership functions
are shown in Fig. 10.
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Fig. 10— Membership distributions for input variables
(a) Torque error (b) Flux error and (c) Statfiux angle.

7 Fuzzy Rules for Direct Torque Control Scheme

To improve the performance of classical DTC scheme, Fuzieg have
been developed. In thEable 1, ‘1’ represents the upper limb switches and ‘0’
represents the lower limb switches of the inverter. Switclstates of the
inverter varies from Yto V,;. From this table it is concluded thaty=¥; and
which are null states. That is,c\&nd \, are zero vectors. The fuzzy system
comprises 12 groups of rules and each of which contains 15 rulds gEagp
represents the respective stator flux aryl&or example, rules are shown in
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Table 2 for stator flux angléy, 6, and6s. For every combination of inputs and
outputs, one rule can be applied. Totally, there are twelve-stator flux &rgles

0, to 0, and 180 rules are formed. With the help of them, corresponding
switching state of the inverter is selected.

Table 1
Switching States of Voltage Vectors

[9)]
—
Q
-
D
n
c
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c
N
c
@
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[l il all (el {e]lle] ]

Table 2
Fuzzy Rules Developed for Direct Torque Controlhhégue

6, 0, 6s

E Ey P 4 N P z N P 4 N
te
PL Vi V, | Vo Vs, Vo, | Vs Vs, Vs Vs
PS \, V, | Vs Vs, Vs | V3 Vs Vs V,
ZE Vo Vo | Vo Vo Vo | Vo Vo Vo Vo
NL Vs Vo | V4 Ve Vo | Vs Vi Vo Vs
NS Ve Vs | Vs Ve Ve | Vs Vi Vs Ve

From the rules, fuzzy inference equations are given as

a; = min(A (Ey), 1B (Ee ). UCi (8)). (10)
uNi'(n) = min(ai, pN; (), (11)
uN(n) = max%uNi'(n)- (12)
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8 Simulation Procedures

A 1kW induction motor was used for simulation. The parameterfieof t
machine were determined experimentally and are given in the dppé&or the
simulation of the viable torque control schemes, Voltage saovester (VSI)
was employed. The simulations were carried out using MATLABVULINK
technical package described in [13, 14].

8.1 Direct Torque Neural Network Controller

The neural network is trained using the MATLAB neural-netwooksbox.
This network consists of a three layer neural — network thitee input nodes
connected to five log sigmoid neurons and three pure output nodesctemhto
five log sigmoid neurons (3-5-3) shown in Fig. 5. The trainingegsatonsists
the parallel recursive error prediction was chosen asmitg technique for
simulation purposes to update the weights of the neural netwiaekal§orithm
was chosen because of its learning speed, robustness and highgleapabi-
lity. This algorithm is so powerful when complicated and nonlifieactions are
to be learned by the neural network [9]. The neural netwauktsiie mentioned
previously was simulated using this algorithm and using the hgertangent
function

—CX

S(x):tan}‘(1 cszl c . (13)
2 1+e—CX

as the nonlinearity in the transfer functions of the hidden and tolayers. The

parametefc’ was fixed to one for all the cases. Small value's’oére found to

give larger weights and vice versa.

Simulation results were determined using an electromagt@tice and
stator flux commands of 2.5Nm and 0.85Whb respectively. The switcreng-f
ency of the inverter used by the simulations was 10kHz whddrequency of
the neural network was 100Hz. The neural network frequency e@sei to
give the plant enough time to stabilize its output. The datd tesdrain the
neural network have been determined by direct simulation of D3iGg a
sampling frequency of 100Hz.

8.2 DTC Using Genetic Algorithm

Neural network trained with genetic algorithm is implemeriteduch a
way that the total number of thresholds and weights of theaheatwork be
packed in n - dimensional vector ‘w’ as given in equation (14).

W= [th12m112 msl2 thslmlsl'” mss1 ) (14)
where:th is threshold vectomis weight vector and n = 38.
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To represent the values of weigktsbinary encoding or floating point enc-
oding is used as a chromosome. Genetic operators used for teipaggentation
are one point crossover, two-point crossover and bit mutatiorfoarftbating
point representation are two point arithmetical crossover, uniforratioat non-
uniform mutation and non- uniform arithmetical mutatidiable 3 shows the
parameters used for simulation:

Table 3

Parameters used for Genetic Algorithm based DTC

Parameters used Binary representation Floating point

representation
Number of chromosomes 30 100
Crossover probability 0.8 0.9
Mutation probability 0.005 0.008

In binary encoding algorithm, Lower number of chromosomes was used
than floating point encoding algorithm. The performance of tséenyis affe-
cted if number of chromosomes reduced. To improve the perfornzamteo
overcome this drawback, the best member of each generation engspied
into the succeeding generation. Crossover probability can be cinosef.5 to
0.9. Convergence rate becomes slower with the higher crossovebiptpba
values. Convergence rate should be in high bias level. Mutatiorakate for si-
mulation as shown ifTable 2 will make the convergence faster. In floating
point-encoding algorithm, non-uniform mutation and non-uniform arithmetic
mutation operators were introduced to prevent premature convergeime
tuning capabilities of genetic algorithm were achieved by usirggtbperators
and performance of the algorithm was also improved.

8.3 Direct Torque Fuzzy Logic Controller

Direct torque control of induction motor using fuzzy logic wdsoa
simulated using the MATLAB / SIMULINK package. Membership fiimas
were chosen and simulations were carried out. Only for thwee dhgle
positions, rules were given ifable 2 Similarly, rules could be formed for
another nine flux angle positions and totally for twelve pms#j rules were
written and membership functions were formed. Simulations includ¢hall
possible rules and total number of rules found is 180.

9 Results and Discussions

As described earlier, 1kW induction motor was used for simulatiuh
results were obtained. Switching frequency of the invert@mtdor simulation
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was 10KHz. There fore, the sampling time taken for simulatias @.1ms.
Torque and flux reference values taken were 2.5Nm and 0.5Wb wigee &@nd
flux hysteresis values are 0.5Nm and 0.02Whb respectively. Fig. 11 shews
actual torque developed in induction motor using conventional DT @riiRef
to the Fig.11, torque rises from 0 to 2.5Nm in 10ms and then osziladbeind
the reference value in a narrow band.

9.1 DTC using Neural Network

The algorithm used to train the neural network is back proioagatith
momentum factor. The time taken to train the neural netwseikg this algo-
rithm is 2000s. The simulations that have been performed in this pegper
obtained using a trained state selector neural network. Tieedi®utputs are
taken from the outputs of the conventional DTC. Thus, the hgitiine is basi-
cally the time used in the simulation by the conventional DTC with the induction
motor. All training algorithms were used to train the 3-5-3 alenetwork stru-
cture using sigmoids. The torque and phase currents for thadlfstecond of
simulation using a state selector neural network trainetidoypack propagation
algorithm are shown in Fig. 12 and Fig. 13 respectively. The ternpem@effi-
cient of all the neurons was fixed to one, which gives reasenedibht magni-
tudes. An increase in the learning rate produces a fastemigamit a certain
point it could become unstable, in the sense that the performastee begins
oscillating around some local minimum, which make the weightsseitie to
their final values. A small learning rate is convenient etterugh it requires
more training time in order to get a safety weights cayerece.The results of
the simulations given by back propagation are almost the sarae by the
conventional DTC, which shows that the neural network has been fultedrai

9.2 DTC using Genetic Algorithm

9.2.1 Binary representation

In binary representation, elitist strategy is used to fix therpiatl source of
loss by copying the best member of each generation into the suncrgedera-
tion. The crossover rates of 0.5, 06, 0.7 and 0.9 in the problem edle ttre
results show that convergence rate is slower with the higs@mresrate, maxi-
mum fithess values never get as high as with the setfifgB. In addition, mu-
tation rates of 0.1, 0.05, 0.01, 0.001 and 0.0001 in the problem are tried. Figs. 14
and 15 show the actual torque developed using DTC by neural netraiord
with genetic algorithm in which Fig. 14 represents binary coding. rékelts
showed that the low mutation rate lead to poorer solutions fasier
convergence. The higher mutation rate allows better solutione found, but it
prohibits convergence to a high bias level. These results alscedhbat the
GA procedure is not highly sensitive to parameter changes1&igxhibits the
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step function of the developed torque in induction motor using neunabre
trained with genetic algorithm using binary coding representation.

9.2.2 Floating point representation

In floating point representation, the genetic operators needsulcaref
designing to preserve the constraint. There is no such problehe ibinary
representation, but the design of the operators is rather simglés paper, the
property of convex space is used in designing the operators.Toyperty
indicates that for any two points w wj (E [L, U]), the linear configuration a
w; +(1-a) w (E [L, U]), where a = (E [0,1]). If only ordinary crossovers used
for the resulting offspring, the premature convergence cannavdided since
the population size is finite. Using the non-uniform arithmeticassover, new
points of population can be obtained which are much helpful to prevent prematu-
re convergence. Both NUM (Non Uniform Mutation) and NUAM (Non Umrfor
Arithmetical Mutation) are the operators responsible foffitiige tuning capabi-
lities of the genetic algorithm. These two operators ihjtiegarch the space uni-
formly and then locally at later steps. It should be mentitmed that when us-
ing NUM some elements of the solution often lay on the boundary cletireh
space, this is not the case with using NUAM. Fig.15 repreiant®rque deve-
loped in induction motor with DTC using floating point coding representations.

9.2.3 Comparison of binary and floating point representations

From the detailed investigations, it is observed that therpgiint repre-
sentation provides a lot of advantages compared with the bigairgsentation.
It is capable of representing large domains, while the birggsesentation must
sacrifice precision with an increase in domain size, gfised binary length.
The precision of the floating point representation depends on thelyinge
machine, but generally much better than that of the binary semaion. In
addition, in the floating point representation it is much easietesign special
tools for handling non-trivial constraints [8]. The floating npoiepresentation
may greatly improve a performance of genetic algorithms on mcehe
problems. Fig. 16 shows the locus of the stator flux and it is naticddiux
follows a circular shape. The components of stator fluxes irmstati reference
frame are sinusoidal and 9pRase displacemeltd each other.

9.3 DTC using Fuzzy Logic Controller

In DTC using fuzzy logic, calculated flux error, torque ernod 8ux angle
are taken as inputs and switching states to the invedaeyudiputs. As described
earlier, membership functions were chosen and rules were formezly fogic
controllers especially used in induction motor for low speedabiper. At low
speed operation, ripple contents are more. Here, fuzzy castmgbplied to
minimize the ripple at low speed region of induction motor. FigsliBe torque
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developed by fuzzy controller and which is compared with the convehtiona
DTC technique. From this result, it is observed thatuziyf logic DTC, torque
easily attains steady state value at the earlier sisajé when compared to the
conventional DTC technique. Initial stator flux rise at futagic control is
shown in Fig.19. From this figure also, it is observed that, the tiken to
reach the steady state value of flux is less using fuzzy IB@IC than the
conventional DTC.

An index error has been used to quantify the error in both the statart
torque responses. This index is the integral of the squere (£2), which is
computed by means of the square error instead of just the Errors obtained
in control schemes have been compared with each other. The error comparison is

shown inTable 4.
Table 4
Errors obtained in various control strategies

Index Error (EI) Classical DTC DTC_NN

T=a*T, w=b*u, Flux Torque Flux Torque
a=100% | b=10%| 2.537F0| 0.189 2.2 18 0.165
a=50% | b=50% | 2577F0| 0.068 | 05318 | 0.025
a=10% | b=10% | 7.46 10| 0.0367 | 1.5816 | 0.0014
a=100% | b=100% 2.46F0] 0.297 2.1 186 0.263

DTC_NN_GA DTC_ Fuzzy

Flux Torque Flux Torque
1.97 10° 0.156 27418 | 0.169
0.68 10° 0.023 0.8818 | 0.033
5.6810° | 0.0015 | 0.14 18 | 0.00135
2.3310° 0.31 25518 | 0.251

T - Actual torque;I- Nominal torque = 5Nm;
w - Actual motor speedq, - Nominal motor speed = 1420r.p.m.

From theTable 4, it is realized that the index errors for flux and torque have
been calculated for the different values of torque anddspederms of their
respective nominal values.
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Fig. 11— Torque developed in conventional DTC.
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Fig. 12— Torque developed in DTC using neural network.

Time (s)
Fig. 13- Stator current in DTC using neural network.
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Fig. 14— Torque developed in DTC using neural network treine
with genetic algorithm (Binary coding representalio
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15— Torque developed in DTC using neural networkd with genetic algorithm
(Floating-point coding representation).
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Fig. 16— Torque step response using genetic algorithm (Bircading representation).
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Fig. 17— Locus of the stator fluxes in the stationary refieeframe.
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Fig. 18—Torque developed in conventional DTC and DTC ufiizgy logic.
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Fig. 19— Initial stator flux rise.
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10 Conclusion

Three different intelligent torque control schemes such astdiorque neu-
ro controller, direct torque neuro controller trained with genalgorithm and
direct torque fuzzy controller have been evaluated for itmlughotor control
and which have been compared with the conventional direct torqusolcon
technique.

Table 5
Features of Adaptive controllers
ntrol S
SI.No. Co to_ Advantages Limitations
Strategies
1.Many training methods such
as Back propagation algorithm,
parallel  recursive  method, 1.Training time required i$
1 DTC using Kalman filter method and adap-more.

' Neural Network | tive neuron model methods afe?.Affected by parameters of
available. the machine changes.
2.The results obtained are very
close to conventional DTC.

DTC using \:/Lvt?ecr:: uéi(r:%/ain Izizeaifr]:?:(r:(tezc‘-
Genetic 1.1t is not highly sensitive to pa- es i
2. Algorithm rameter of the machine changes,; ... .
; . ) 2.Difficult to design for
(Binary 2.Gives precise results. handii vial
Representation) andling non-trivial con
straints.
1. It is also used to improve the
DTC using pre(;[ﬁ;mnce on numerlcall. In floating point represer
Genetic gCa ablé of representing auit ntation, the genetic opera-
3. Algorithm ~~ap o' rep 9 AUS0rs needs careful designing
X . large domains. -
(Floating point . . o to preserve the constraint.
. 3.In this representation, it is ea-
Representation)| ™ X .
sier to design special tools for
handling non-trivial constraints
1.Fuzzy logic does the resistan1.Many rules are required
4 DTC using ce compensation in DTC at lowto provide accuracy.

' Fuzzy Logic speed region. 2.Computational time requ-

2. Provides more accuracy ired is high.

Since the conventional DTC presents some disadvantages suitiicabi-
es in torque and flux control at very low speed, high current @anadé ripple,
variable switching frequency behavior, high noise level atdpeed and lack of
direct current control, an adaptive torque controller must be pedpies high
performance applications. In this paper, three various adaptettégent torque
controllers have been proposed and results were compared. Amoingsa|
three adaptive controllers, genetic algorithm based diregpi¢oneuro controller
shows better response. By using this controller, parameters aftiosmumotor
are also be tuned and parameter variations are also be nuwaede When
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compare to other adaptive controllers precise results havedbt&ined using
genetic algorithm based direct torque neuro controller. Theithdil advanta-
ges and limitations of each scheme is presenté&dlite 5.

11 Appendix
Rating 1kwW Rr  8.38Q Ghom 1420 r.p.m.
P 4 Ln 0.7014H Tom 6.7 Nm
Rs  7.23Q Le<L, 0.0391H J 0.006 kgm
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