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on an Autoregressive Model 

Victor Yurevich Itkin1, Michail Sergeevich Ulyanov2,  

Victor Vladimirovich Yuzhanin2 

Abstract: A new method of identifying the validity of pressure sensor readings 

has been developed. The method uses duplication of measurements which allows 

an estimation of the magnitude of an error, although it does not make it possible 

to establish which sensor is responsible for the error. The method helps to evaluate 

the systematic error magnitude and to test whether the error exists within a 

permission range accounting for a correlation structure of measurement series. An 

autoregressive model with a drift coefficient is applied to investigate a time series 

of the differences in readings. To test the significance of this coefficient, a 

modified Student’s test is used. Unlike the standard Student’s test, this new 

method tests an interval hypothesis. The null hypothesis assumes the systematic 

error is within the range and the alternative is out of the range. Error probabilities 

of type I and type II are calculated. An example of 2nd order autoregressive model 

was considered and the sensitivity of the proposed method was investigated. 

Keywords: Pressure monitoring, Systematic error, Validity of statistical data, 

Time series analysis, Student’s significance test, Interval hypothesis. 

1 Introduction 

The main problem of a dispatcher of a gas transportation company is to 

monitor and control the technological regime of a pipeline system section. Failure 

to comply with the normal operation of the gas transmission system (GTS) can 

lead to serious economic and environmental consequences, as well as to human 

casualties. The GTS state is monitored according to information received from 

the instrumentation. The dispatcher can make right decisions only if the incoming 

information is valid. 

In practice, simple methods are used to control the validity of the readings of 

the pressure sensors on main gas pipelines, such as checking whether the readings 
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and their rate of change are outside the permissible range, etc. [1, 2]. These 

methods allow one to identify an obvious technical malfunction only. 

In [3], the sensor validity has been analyzed without taking into account the 

redundancy of measurements (the readings time series of every sensor has been 

considered separately), based on previous measurements only. 

In [4  6], various approaches to the estimation of the sensor systematic errors 

have been considered, taking into account their relationship and, as consequence, 

the redundancy of measurements. But, in these papers, the acceptable threshold 

of systematic error and the statistical nature of the obtained estimations have not 

been taken into account.  

In [5], the sensor registration problem has been investigated. To solve it, the 

Kalman filter and EM-algorithm have been applied, and the redundancy of the 

measurements has been taken into account. As in the other papers, the permissible 

threshold of systematic error has been not studied. 

In [7], a method of the validity control based on groups of “similar” sensors 

has been proposed. Any influences of the readings of one sensor in a group on 

other sensors within the group have been investigated. This method does not take 

in account shot-off valve locations, and the acceptable threshold of systematic 

error also is not considered. 

The systematic error identification problem has been considered in numerous 

publications dedicated to tracking moving targets [8  10]. The duplication of 

measurements is utilized to estimate biases, but the problem of falling within the 

acceptable range has not been investigated. 

In this paper, it is assumed a small systematic error is not a sign of a sensor 

malfunction. Therefore, it is necessary to set a certain threshold, the excess of 

which already indicates a sensor failure. Moreover, the stochastic nature of sensor 

readings should be considered. The problem of identifying the systematic error 

in this formulation has not been previously solved. Thus, the novelty of the 

proposed method, and the validity in its identification, is that a sensor failure is 

estimated by taking into account the permissible threshold of its systematic error. 

In this paper, the problem of identifying sensors with a significant systematic 

error is considered, and cases where there is no confidence that the error is large 

remain outside the scope of this study. 

The method, proposed in [11], is based on the identification of a significant 

difference in the readings of hydraulically dependent pressure measuring 

channels. The hydraulic dependence of readings of the measuring channels is 

determined not only by the instrumentation location, but also by the current state 

of the shut-off and control valves. Each group of measuring channels consists of 

instruments, the pressure between which at a certain point in time cannot differ 

significantly. 
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In [12], a method the testing of an interval hypothesis of no difference 

between mean values of two samples is described. This method is widely used in 

biostatistics and medicine to comparing of an effectiveness of drugs. The method 

is described below in this paper in more detail. 

However, when comparing the readings of the measuring channels from this 

group, it is necessary to account for both the inherent error of the instrumentation 

and the error of signal conversion in the software and hardware of each measuring 

channel (Fig. 1). 

 

Fig. 1 – Measuring channel structure. 

 

The errors of analog circuits and communication lines, as well as the 

uncertainty of time synchronization, are added to the initial error of the 

instrumentation. These errors are of a random nature. In this paper, a new 

statistical method for comparing the readings of the instrumentation measuring 

channels is proposed. 

In the operation of linear telemechanic systems, both data transfer on request 

with a constant sampling interval and sporadic transfer are used [13]; the 

measured parameter is transmitted only in case of a significant change in reducing 

traffic. In the latter case, the sampling interval is variable, and it is necessary to 

use special methods for the signal analysis. In this paper, the case of a constant 

sampling interval is studied. 
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The rest of this paper is organized as follows. The second section describes 

the two one-sided t-tests (TOST) method. In the third section, a probabilistic 

model of sensor readings and their differences, assuming results of preliminary 

statistical processing of empirical data, is introduced. The fourth section proposes 

a new autoregressive model for the identification of a sensor systematic error, 

assuming a correlation structure of time series. The validity test of sensors is 

based on a modified Student’s test for an interval hypothesis of the model drift 

coefficient significance. A sensitivity of the proposed new method and its error 

probabilities of type I and type II are investigated in the fifth section. The sixth 

section concludes the research. 

2 Probabilistic Model of Data Transfer on Request 

A probabilistic model for readings of the measuring channel is introduced: 

 ,true

t t tP P    (1) 

where t is the measuring time point, true

tP  is the true pressure value in the sensor 

location and the quantities 
tP  and 

t  are the signal and the error of the measuring 

channel, respectively. 

The case when there are only two measuring channels in the group, ( )

t

aP  and 
( )

t

bP , is considered. The difference between the readings of the channels is 

determined by their errors only: 

 ( ) ( ) ( ) ( ) ( ) ( )a b true true a b a b

t t t t t t t tte P P P P        . (2) 

Figs. 2 and 3 show examples of time series 
te , calculated by real data. 

 

Fig. 2 – An example of nonstationary time series 
te . 
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Fig. 3 – An example of stationary time series 
te . 

 

The measuring data of 29 sensor groups of the linear part of the main gas 

pipeline LLC “Gazprom transgaz Moscow” has been investigated. For all the 

data, the hypothesis of stationarity was analyzed with the autocorrelation function 

(ACF) and the Dickey-Fuller test [14]. In most cases, specifically 24 of 29 (83%), 

the differences 
te  were stationary time series. For other cases, the very fact of 

nonstationarity, apparently, indicates the invalidity of the readings; however, this 

requires a separate study. In this paper, only stationary time series were 

considered. 

3 Two One-sided T-tests (TOST) Procedure 

In 1987, Schuirmann proposed a method to test interval hypotheses [12], i.e., 

whether a difference of means is into an interval of  1 2,  . Let’s present the 

method by changing some of the notation. A test sample and a reference one of 

independent normal observations are considered. The null hypothesis is 

formulated as 

  0 1 2: ,H     (3) 

and the alternative is 

  1 1 2: ,H    , (4) 

where 
R T   is a difference of the unknown means of the test sample and 

the reference one. 

The TOST procedure provides the tests of two one-sided hypotheses: 
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0 1 1 1: , :H H        (5) 

and 

 
0 2 1 2: , : .H H        (6) 

The means are considered as equivalent if 

 
  1

1 1
ˆ

R Tx x
t t 

 
 


 (7) 

and 

 
 2

2 1
ˆ

R Tx x
t t 

  
 


, (8) 

where 
Rx  and 

Tx  are the sample estimations of the unknown means, ̂  is the 

sample estimation of the standard deviation of 
R Tx x , which is calculating 

differently depending on whether variances of samples are assumed to be 

different or the same, 
1t 

 is the quantile of the Student’s t -distribution with 

degree of freedom and   is the nominal level of significance. The real probability 

of the type I error was not evaluated in [12], but it’s stated that the TOST is 

“identical to the procedure of declaring equivalence only if the ordinary 1 2   

confidence interval for   is completely contained in the equivalence interval 

 1 2,  ”. 

There is some incorrectness in the procedure description [12]. The null 

hypothesis cannot be formulated as an inequality, because in this case the test 

statistic distribution depends on the unknown value of  . It is necessary to 

reformulate the one-sided hypotheses: 

 
0 1 1 1: , : ,H H        (9) 

and 

 
0 2 1 2: , : .H H        (10) 

In this case, both statistics 
1t  and 

2t  would have a Student’s t -distribution if 

the corresponding null hypothesis, 
0H   or 

0H  , is true. 

One can consider an alternative TOST-procedure, by assuming the null 

hypothesis as  0 1 2: ,H     and the alternative as  1 1 2: ,H    . Let’s 

compare this variation with the original one. Consider the statistic: 

 .
ˆ

R Tx x
t





 (11) 
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It has a non-central Student’s distribution with   degree of freedom and the 

non-centrality parameter /  , where   is the real (but unknown) standard 

deviation of 
R Tx x . If the sample sizes are large enough (50 observations or 

more), then t  is approximately normal with mean /   and standard deviation 

1. Because   is unknown, it should be replaced by its estimation ̂ . If 
0H   is 

true, then 1 1
ˆ/t     E , if 

0H   is true, then 2 2
ˆ/t     E . Fig. 4 allows to 

compare the variants of TOST null hypotheses. 

Fig. 4 shows areas for equivalent and non-equivalent means for two variants 

of the null hypothesis:  0 1 2: ,H     and  0 1 2: ,H    . 

 

Fig. 4 – Comparing two variants of TOST null hypotheses. 

 

In this paper, the equivalence test to detect a significant systematic error, 

which is a signal of sensor readings invalidity is applied. The original TOST 

would detect the invalidity more strictly, by discarding the samples, in which the 

equivalence was not confirmed. The alternative TOST is less strict in this sense, 

because it discards only samples, in which the non-equivalence is confirmed. This 

thin difference is obviously illustrated by Fig. 4. 

If 1  and 2  are close to zero (it can be due to small sample sizes, large 

variances or small 
1  and 

2 ), using the original TOST-procedure with the null 

hypothesis  0 1 2: ,H    , the means will be considered non-equivalent even 

if the sample value of t -statistic is exactly zero. The alternative procedure with 

the null hypothesis  0 1 2: ,H     leads to the more wider equivalence area. 
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It is not enough to only use the TOST-procedure to detect a significant 

systematic error of pressure sensors. The correlation structure of the pressure 

sensors time series has to be considered. 

4 Systematic Error Identification 

Let us consider the most difficult to detect type of invalidity – the systematic 

error of the measuring channel, the magnitude of which is large enough to mislead 

the dispatcher. However, it is not outside the permissible limits that would cause 

the readings to be rejected by known algorithms (Fig. 5). Therefore, this type of 

invalidity cannot be determined by existing monitoring methods [1]. 

 

Fig. 5 – An example of measurements with systematic error 0.17te E . 

 

Ideally, a measuring device should not have a systematic error, but in fact, a 

small systematic measurement error is acceptable. For practical purposes, it is 

necessary to estimate the error magnitude and determine whether it is permissible. 

However, it is impossible to determine the error magnitude of each 

measuring channel based on the difference of the readings only. There are cases 

when large errors of both channels have the same signs and compensate each 

other. Nevertheless, by analyzing the readings differences, it is possible to 

identify a wide class of invalidities, for example, a large systematic error of one 

of the channels, if the other is serviceable. 

In terms of mathematical statistics, the systematic error is an expectation 

(mean) of the measuring error. To calculate it, write down the expectation of the 

readings difference: 

 (1) (2).t t te    E E E  (12) 
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Based on a dispatcher’s expert opinion, it is possible to estimate the threshold 

value of 
teE , which is denoted by Δ, and check the hypothesis of the following: 

 0 1: , :t tH e H e   E E . (13) 

Here 
0H  is a null hypothesis and 

1H  is an alternative one. 

If the alternative hypothesis is not rejected, then it means unambiguously that 

there is an intolerably large systematic error in one of the channels or in them 

both simultaneously. If the null hypothesis is not rejected, it still doesn’t mean 

the readings are valid, but it can be assumed that it is very likely. 

The observations 
te  are dependent; therefore, the standard Student’s test of 

the means’ equality cannot be applied. Nonparametric tests of location such as 

Wilcoxon, Van der Van or median tests are limited to testing the class of simple 

hypothesis 
0 1: 0, : 0t tH e H e E E , provided that the measurements are 

independent [15]. 

The null hypothesis 
0H  with the two-sided alternative can be replaced by 

two hypotheses with one-sided alternatives: 

 0 1: , :t tH e H e    E E , (14) 

 0 1: , :t tH e H e    E E . (15) 

If both null hypotheses, 
0H   and 

0H  , are not rejected, the general null 

hypothesis 
0H , (13), should not be rejected either. If one of the null hypotheses, 

0H   or 
0H  , are rejected, the general null hypothesis 

0H  (the systematic error is 

zero) should be rejected.  

To test the statistical hypotheses (14) and (15) it is necessary to account the 

correlation structure of a time series 
te ; that’s why the Box-Jenkins method for 

its modeling is used [16]. 

A statistical study of the stationary available data shows, that the ACF 

decreases exponentially and the partial ACF values are statistically insignificant 

after a certain lag. Therefore, the considering time series correspond to the 

autoregressive models. 

To account for a possible drift of the differences in reading an autoregressive 

model, a constant 
0a  is applied: 

 
0 1 1 2 2 ,t t t k t k te a a e a e a e u         (16) 

where 
0 1, , , ka a a  are model coefficients, 

tu  is normal white noise with 

variance 2

tu  D , and k  is an autoregressive order. A statistical analysis of 24 

actual time series shows, that k  can be from 0 to 3. The value of k  was 
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determined by model residuals testing corresponding to the white noise properties 

using the Box-Jenkins method [16]. 

Let us reformulate hypotheses (14) and (15) taking into account the fact that 

the time series of the differences in readings corresponds to the autoregressive 

model. The expectation of the differences in readings is 

 0

1

.

1
t k

i

i

a
e

a





E  (17) 

Therefore, (14) and (15) take the form 

 0 0
0 1

1 1

: , : ,

1 1
k k

i i

i i

a a
H H

a a

 

 

   

  
 (18) 

 0 0
0 1

1 1

: , : .

1 1
k k

i i

i i

a a
H H

a a

 

 

   

  
 (19) 

To simplify testing hypotheses (18) and (19), let us introduce two additional 

variables, (1)

t te e   and (2)

t te e  , shifted relative to the original series by 

the threshold value   in positive and negative directions. Then, the hypotheses 

take the form: 

 (1) (1)

0 1: 0, : 0t tH e H e  E E , (20) 

 
(2) (2)

0 1: 0, : 0t tH e H e  E E , (21) 

 
(1) (1)

0 0
0 1

1 1

: 0, : 0

1 1
k k

i i

i i

a a
H H

a a

 

 

 

  
, (22) 

 0 0

(2) (2)

0 1

1 1

: 0, : 0

1 1
k k

i i

i i

a a
H H

a a

 

 

 

  
, (23) 

where 
0

( )ia  corresponds to  ( ) , 1,2 .i

te i  

Since the stationary time series are to be considered, one has that 
1

1;
k

ii
a


  

therefore, the denominators of the fractions (20) ‒ (23) are positive. Therefore, 

the final form of the considered hypotheses is: 

 (1) (1)

0 0 1 0: 0, : 0H a H a   , (24) 

 
0 0

(2) (2)

0 1: 0, : 0H a H a   . (25) 
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The autoregressive coefficients (1)

0a  and (2)

0a  should be estimated by actual 

data. For estimating, the least square method is recommended [17], because in 

this case the distribution of t -statistic is more stable than when using the 

maximum likelihood method. In addition, the least square method is significantly 

faster, although it is less efficient. 

When using the least square method, the autoregressive coefficients’ 

estimations and their covariance matrix are 

  
1

,T T


a X X X e  (26) 

   2 1cov ,  C a V  (27) 

where 

  

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

1 0 0 0 0

0

0
( )

0

0

k

kT

k

k k k

n k







  

 
 

   
 
    

    
    

 
 

     

EV X X , (28) 

X  is a least square model matrix, e  is a vector of last n k  values of the series 

te , 
i are autocovariances,  cov ,i t t ie e   , and 

2  is a noise variance.  

Estimating the coefficients, 
2  and 

i  are unknown; instead, two variants of 

covariance matrix estimation can be used to calculate t -statistics: 

 
1

2ˆ ˆ T


 C X X  or 2 1ˆ ˆˆ C V . The corner element of the matrix Ĉ  is a variance 

estimate of the model constant. In the second case, it is calculated as 

 
2

2

0,0

ˆ
ˆ ˆ, ,

T

c
n k n k


  

 

r r
 (29) 

where r  are residuals of the model. 

To obtain the matrix V̂ , it is necessary to calculate empirical 

autocovariances ˆ
i . 

The t -statistics for hypotheses (24) ‒ (25) can be obtained as 

 
(1) (1) (2) (2)

0 0 0 0
1 2

0,0 0,0

ˆ ˆ ˆ ˆ
, .

ˆ ˆˆ ˆ

a a a a
t n k t n k

c c
     

 
 (30) 

One has that the least square method using t -statistics (30) have a non-

central Student’s distribution with 2 1n k  degrees of freedom (DOF) [18], 
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which for large samples is well approximated by the normal law. The non-

centrality parameters are equal to the expectations of the t -statistics, which in 

this case are 

  1

1

1 ,
k

t i

i

n k
t e a



 
   

 
E E  (31) 

  2

1

1 .
k

t i

i

n k
t e a



 
    

 
E E  (32) 

To test the hypotheses (24) ‒ (25), it is necessary to fix a significance level 

  and calculate the quantile of the classical (central) Student’s distribution 1t  . 

If 1 1t t  , the null hypothesis 
0H   is rejected. 

If 2 1t t   , the null hypothesis 
0H   should be rejected. 

In the case of rejecting one of the null hypotheses, 
0H   or 

0H  , the general 

null hypothesis 
0H  also should be rejected. 

Moreover, if (1)

0
ˆ 0a   (or (2)

0
ˆ 0a  ), then there is no need to test the hypothesis 

0H   (or 
0H  ). 

5 Simulation Example 

To illustrate the operation of this method, let us consider an example of the 

autoregressive model of 2nd order for the differences in readings (Fig. 5). 

The model parameters are given 
0 1 20.12, 0.5, 0.2a a a    , the noise 

variance is 
2 0.01  , and a sample of size 144n   was simulated. Taking the 

threshold value to be 
20.1kg cm   and a significance level of 0.05  , the 

results shown in Table 1 are obtained. 

Table 1 
Calculation results. 

Parameter Value  Parameter Value 

Hypothesis 0H    Statistic t1 DOF n – 2k – 1 = 137 

(1)

0â  0.042  Statistic t1 5.06 

̂  0.1  T0.95(137) 1.66 

n 144  Test result rejected, t1 > t0.95(137) 

k 3    
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6 Sensitivity of the Method 

Let us investigate the sensitivity of the developed method using this example 

and study how   and  , the error probabilities of type I and type II, depend on 

the true systematic error. 

Note,   is not equal to a type I error probability for the interval hypothesis. 

This probability is not a constant in this case. 

Regardless of which of the hypotheses 
0H  or 

1H  is true, the statistics 
1t  и 

2t  have a non-central Student’s distribution with 2 1n k   degrees of freedom 

and non-centrality parameter  , which is equal to 
1t E  for 

1t  and 
2t E  for 

2t . The expectations are calculated by the formulas (31) and (32), respectively. 

For large samples, non-central Student’s distribution can be approximate with the 

normal law,    1,G t t     , where  ,G t   is the non-central Student’s 

cumulative distribution function and  x  is the same for standard normal 

distribution. 

A type I error arises in case, if the null hypothesis 
0H  is true, i.e. 

 ;te    , and at least one of the statistics 
1t  or 

2t  hits critical region, i.e. 

1 1t t   or 2 1t t   . Let’s find the probabilities of these events: 

      
01 1 1 1 1 1 1 1 , 1 Ф ,H t t G t t t t         P E E  (33) 

      
02 2 1 1 2 1 2 , Ф .H t t G t t t t          P EE  (34) 

The events  1 1t t   and  2 1t t    are incompatible, therefore the general 

type I error probability is 

  
0 1 1 2 1 1 2 or .H t t t t        P  (35) 

It should be noted that it is impossible to reject both null hypothesis 
0H   and 

0H   versus considered alternatives, 
1H   and 

1H  , therefore there is no need to 

consider multiple testing problem [19]. 

A type II error arises if the null hypothesis is false, i.e., 

   E ; ;te       , but the TOST procedure doesn’t reject it, i.e., 1 1t t   

and 2 1t t    simultaneously. The probability of this error is: 

 
   

       
1 11 1 2 1 1 1 2 1

1 1 1 2 1 1 1 2

 and 1  or 

, , Ф Ф .

H Ht t t t t t t t

G t t G t t t t t t

   

   

          

       

P P

E E E E
 (36) 
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One might get the impression that 1  , but the probabilities   and   

are calculated with different assumptions:  assuming  ;te   E  and   

assuming    ; ;te      E . Therefore, the expression has no sense. 

As the problem is symmetric about zero, it is natural to consider a probability 

error dependency with respect to the relative deviation of the absolute value of 

the systematic error from the threshold value: 

   .td e   E  (37) 

 
(a) 

 
(b) 

Fig. 6 – Dependency of the error probabilities of type I (a) and type II (b)  

on the deviation of the systematic error from its threshold. 
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Figs. 6a and 6b show the probabilities α and β calculated for various sample 

sizes: 
1 144n  , 

2 288n  , 
3 1440n  , 

1 8640n  . 

Let us fix the type II error probability 0.05   and find values of the 

deviation d of the systematic error from its threshold, which can be identified by 

this method (Table 2). Notice, the type I error probability is always less than the 

significance level, 0.05    ; therefore, there is no need to take this into 

account when choosing the sample size. 

As one can see from Table 2, to identify a 5% deviation of the systematic 

error from the threshold with a probability of 5%, it is necessary to have more 

than 8640 observations. 

Table 2 

Deviation of the systematic error from its threshold. 

n te E  [kg/cm2] d [%] 

144 0.0400 40.0 

288 0.0280 28.0 

1440 0.0125 12.5 

8640 0.0050 5.0 

 

7 Calculation Algorithm 

Sometimes there is a possibility to obtain additional measurements from 

pressure sensors, in this case one should adapt the necessary sample size. For this 

it is required: 

– to obtain from an expert the threshold value of the systematic error Δ; 

– to choose the nominal significance level φ and the permission level of the 

type II error probability β; 

– to choose an acceptable deviation (absolute or relative) of the absolute 

value of the real systematic error from its threshold; 

– to estimate a sample size providing an identification of this deviation with 

given error probabilities;  

– to calculate the differences in readings to get a time series sample of the 

given size. 

If it is impossible to get new measurements and there is a sample with fixed 

size, one can estimate a maximum value of the deviation d at fixed probability β. 
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Then one should: 

– establish if the sequence of the differences is a stationary time series with 

standard methods (ACF plot and Dickey-Fuller test); 

– evaluate the autoregressive model order and estimate the model parameters 

with the least square method; 

– verify the model by testing whether the residuals possess white noise 

characteristics; 

– test the hypotheses (24) ‒ (25) with the proposed modification of the 

Student’s test. 

If the general null hypothesis 
0H  is rejected, there is too large of a systematic 

error on one of the sensors or both at once and the measured data is invalid. 

Otherwise, one can assume the sensors are serviceable and the data is accurate 

enough. 

8 Concluding Remarks 

The proposed method allows one to identify systematic errors by taking into 

account a permissible threshold and the data correlation structure, which is to be 

researched only in the case of stationarity of time series of sensor readings. The 

real data analysis has shown that in most cases (more precisely, 83%) the time 

series are stationary. 

For the stationary case it is possible to distinguish a small acceptable error 

from a large one. To achieve this goal, an interval hypothesis was considered and 

tested by the modified Student’s test. 

Testing of the interval two-sided hypothesis was reduced to a testing of the 

two simple one-sided hypotheses of the significance of the drift coefficient of the 

autoregressive model. 

The sensitivity of the method was studied. The probabilities of errors of types 

I and II were calculated and the required sample size was estimated. 

Finally, let us summarize by repeating that the proposed method allows one 

to identify a large systematic error of sensor readings and to prevent wrong 

decisions in the operational control of gas transmission. 
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